Introducción al sistema inmune en plantas

Katia Ojito-Ramos, Orelvis Portal

Resumen


Muchas plantas son invadidas por microorganismos patógenos que deterioran su crecimiento y reproducción. Las plantas poseen un sistema de defensa que va desde barreras físicas hasta señales moleculares y sistémicas, similares a la inmunidad innata en animales. Este sistema actúa de dos formas fundamentales: la primera responde a moléculas comunes de muchas clases de microorganismos patógenos y no patógenos y la segunda responde directamente a factores de virulencia de los patógenos o a sus efectores en el hospedante. El conocimiento detallado del sistema inmune de las plantas y las relaciones moleculares evolutivas que se establecen entre los dos organismos permitirá una mejor comprensión de la interacción planta-patógeno. Ello redundaría en una mejor manipulación genética de las plantas con el objetivo de lograr resistencia a patógenos con una mejora de las cosechas para la producción de alimentos. En este trabajo se realiza un compendio sobre las características, interacciones moleculares y bioquímicas de los dos mecanismos de defensa en las plantas, así como las estrategias empleadas por los patógenos para suprimir ambas fases de la inmunidad.

Palabras clave: ETI, interacción planta-patógeno, PTI


Texto completo:

PDF HTML

Referencias


Allen, RL, Bittner-Eddy PD, Grenville-Briggs LJ, Meitz JC, Rehmany AP, Rose LE y Beynon JL (2004) Host-parasite coevolutionary conflict between Arabidopsis and downymildew. Science 306: 1957-1960

Armstrong, MR, Whisson SC, Pritchard L, Bos JI, Venter E, Avrova AO, Rehmany AP, Bohme U, Brooks K y Cherevach I (2005) An ancestral oomycete locus contains late blight avirulence gene Avr3a, encoding a protein that is recognized in the host cytoplasm. Proceedings of the National Academy of Science USA 102: 7766-7771

Asai, T, Tena G, Plotnikova J, Willmann MR, Chiu WL, Gómez-Gómez L, Boller T, Ausubel FM y Sheen J (2002) MAP kinase signalling cascade in Arabidopsis innate immunity. Nature 415: 977-83

Bednarek, P, Piœlewska-Bednarek M, Svatoš A, Schneider B, Doubský J, Mansurova M, Humphry M, Consonni C, Panstruga R, Sanchez-Vallet A, Molina A y Schulze-Lefert P (2009) A Glucosinolate

metabolism pathway in living plant cells mediates broad-spectrum antifungal defense. Science 323: 101-106

Boller, T y He ShY (2009) Effectors in microbial pathogens pattern recognition receptors in plants and innate immunity in plants: An arms race between. Science 324: 742-44

Brunner, F, Rosahl S, Lee J, Rudd JJ, Geiler C, Kauppinen S, Rasmussen G, Scheel D y Nurnberger T (2002) Pep-13, a plant defense-inducing pathogen-associated pattern from Phytophthora transglutaminases. EMBO Journal 21: 6681-6688

Catanzariti, AM, Dodds PN, Lawrence GJ, Ayliffe MA y Ellis JG (2005) Haustorially expressed secreted proteins from flax rust are highly enriched for avirulence elicitors. Plant Cell 18: 243-256

Chisholm, ST, Coaker G, Day B y Staskawicz BJ (2006) Host-microbe interactions: Shaping the evolution of the plant immune response. Cell 124: 803-814

Dangl, JL y Jones JD (2001) Plant pathogens and integrated defence responses to infection. Nature 411: 826-33

Dodds, PN, Lawrence GJ, Catanzariti AM, Ayliffe MA y Ellis JG (2004) The Melampsora lini AvrL567 avirulence genes are expressed in haustoria and their products are recognized inside plant cells. Plant Cell 16: 755-768

Dodds, PN, Lawrence GJ, Catanzariti AM, Then T, Wang ChA, Ayliffe MA, Kobe B y Ellis JG (2006) Direct protein interaction underlies gene-for-gene specificity and coevolution of the flax resistance genes and flax rust avirulence genes. Plant Biology 103: 8888-8893

He, P, Shan L y Sheen J (2007) Elicitation and suppression of microbe-associated molecular pattern-triggered immunity in plant-microbe interactions. Cellular Microorganismology 9: 1385-96

Heese, A, Hann DR, Giménez-Ibanez S, Jones AME, He K, Li J, Schroeder JI, Peck SC y Rathjen JP (2007) The receptor-like kinase SERK3/BAK1 is a central regulator of innate immunity in plants. Plant Biology 104: 12217-12222

Janjusevic, R, Abramovitch RB, Martin GB y Strebbins CE (2005) A bacterial inhibitor of host programmed cell death defenses is an E3 ubiquitin ligase. Science 311: 222-226

Jia, Y, McAdams SA, Bryan GT, Hershey HP y Valent B (2000) Direct interaction of resistance gene and avirulence gene products confers rice blast resistance. EMBO Journal 19: 4004-4014

Jones, DA y Takemoto D (2004) Plant innate immunity direct and indirect recognition of general and specific pathogen-associated molecules. Current Opinion in Immunology 16: 48-62

Jones, JD y Dangl JL (2006) The plant immune system. Nature 444: 323-329

Kwon, C, Neu C, Pajonk S, Yun HS, Lipka U, Humphry M, Bau S, Straus M, Kwaaitaal M, Rampelt H, Kasmi F, Jurgens G, Parker J, Panstruga R, Lipka V y Schulze-Lefert P (2008) Co-option of a default secretory pathway for plant immune responses. Nature 451: 835-40

Lauge, R y De Wit PJ (1998) Fungal avirulence genes: structure and possible functions. Fungal Genetics and Biology 24: 285-297

Mudgett, MB (2005) New insights to the function of phytopathogenic bacterial type III effectors in plants. Annual Review of Plant Biology 56: 509-531

Orbach, MJ, Farrall L, Sweigard JA, Chumley FG y Valent B (2000) A telomeric avirulence gene determines efficacy for the rice blast resistance gene Pita. Plant Cell 12: 2019-2032

Pajonk, S, Kwon C, Clemens N, Panstruga R y Schulze-Lefert P (2008) Activity determinants and functional specialization of Arabidopsis PEN1 syntaxin in innate immunity. The Journal of Biological Chemistry 283: 26974-26984

Rehmany, AP, Gordon A, Rose LE, Allen RL, Armstrong MR, Whisson SC, Kamoun S, Tyler BM, Birch PR y Beynon JL (2005) Differential recognition of highly divergent downymildew avirulence gene alleles by RPP1 resistance genes from two Arabidopsis lines. Plant Cell 17: 1839-1850

Rivas, S y Thomas CM (2005) Molecular interactions between tomato and the leaf mold pathogen Cladosporium fulvum. Annual Review of Phytopathology 43: 395-436

Rooney, HC, Van’t Klooster JW, van der Hoorn RA, Joosten MH, Jones JD y de Wit PJ (2005) Cladosporium Avr2 inhibits tomato Rcr3 protease required for Cf-2-dependent disease resistance. Science 308: 1783-1786

Ryan, CA, Huffaker A y Yamaguchi Y (2007) New insights into innate immunity in Arabidopsis. Cellular Microorganismology 9: 1902-1908

Schwessinger, B y Zipfel C (2008) News from the frontline: recent insights into PAMP-triggered immunity in plants. Current Opinion in Plant Biology 11: 389-395

Shan, W, Cao M, Leung D y Tyler BM (2004) The Avr1b locus of Phytophthora sojae encodes an elicitor and a regulator required for avirulence on soybean plants carrying resistance gene Rps1b. Molecular Plant Microbe Interaction 17: 394-403

Shen, QH y Schulze P (2007) Rumble in the nuclear jungle: compartmentalization, trafficking, and nuclear action of plant immune receptors. The EMBO Journal 26: 4293-4301

Takken, FW, Albrecht M y Tameling WL (2006) Resistance proteins: molecular switches of plant defence. Current Opinion in Plant Biology 9: 383-390

Tian, M, Benedetti B y Kamoun S (2005) A second Kazal-like protease inhibitor from Phytophthora infestans inhibits and interacts with the apoplastic pathogenesis-related protease P69B of tomato. Plant Physiology 138: 1785-1793

Tian, M, Huitema E, Da Cunha L, Torto-Alalibo T y Kamoun S (2004) A Kazal-like extracellular serine protease inhibitor from Phytophthora infestans targets the tomato pathogenesis-related protease P69B. The Journal of Biological Chemistry 279: 26370-26377

Tiffin, P y Moeller DA (2006) Molecular evolution of plant immune system genes. Trends in Genetics 22: 662-70

van den Burg, HA, Westerink N, Francoijs KJ, Roth R, Woestenenk E, Boeren S, de Wit PJ, Joosten MH y Vervoort J (2003) Natural disulfide bond-disrupted mutants of AVR4 of the tomato pathogen Cladosporium fulvum are sensitive to proteolysis, circumvent Cf-4-mediated resistance, but retain their chitin binding ability. The Journal of Biological Chemistry 278: 27340-27346

Van Der Biezen, EA y Jones JD (1998) Plant disease-resistance proteins and the gene-for-gene concept. Frontlines 23: 454-456

Wiermer, M, Feys BJ y Parker JE (2005) Plant immunity: the EDS1 regulatory node. Current Opinion in Plant Biology 8: 383-389

Yun, HS, Panstruga R, Schulze-Lefert P y Kwon C (2008) Secretion in plant. Plant Signaling and Behavior 3: 505-508

Zipfel, C (2008) Pattern-recognition receptors in plant innate immunity. Current Opinion in Immunology 20: 10-16




Copyright (c) 2016 Biotecnología Vegetal

Biotecnología Vegetal eISSN 2074-8647, RNPS: 2154. ISSN 1609-1841, RNPS: 0397 Editada por: Instituto de Biotecnología de las Plantas. Universidad Central Marta Abreu de Las Villas. Carretera a Camajuaní km 5.5, Santa Clara, Villa Clara, Cuba CP 54 830 Tel: 53 42200124, e-mail: info@ibp.co.cu

Licencia Creative Commons
Biotecnología Vegetal
está bajo una Licencia Creative Commons Atribución-NoComercial 4.0 Internacional.