Efecto de diferentes protocolos de aplicación de un campo magnético (0.03T) sobre el crecimiento, viabilidad y composición pigmentaria de Haematococcus pluvialis Flotow en suficiencia y ausencia de nitrógeno

Liliana Gómez Luna, Joaquín Menéndez, Inaudis Álvarez, Ignacio Flores

Resumen


En este trabajo se estudia el efecto de un campo magnético de 0.03T sobre el crecimiento, la viabilidad celular y la acumulación de pigmentos en H. pluvialis, con el objetivo de validar su posible utilización a escala comercial. El campo magnético favoreció el crecimiento y la división celular al ser aplicado en la fase de crecimiento exponencial, con una incidencia directa sobre la síntesis de clorofilas. Aplicado durante 15 min o de forma permanente, permitió obtener densidades celulares máximas y una adecuada viabilidad celular, con una reducción del tiempo de cultivo, lo que constituye una ventaja a escala comercial. En cultivos desarrollados en ausencia de nitrógeno se estimuló el crecimiento celular, ofreciendo evidencias de una modulación de parámetros de crecimiento y viabilidad ante condiciones de estrés.

Palabras clave: astaxantina, campo magnético, clorofila, crecimiento celular, microalga


Texto completo:

PDF HTML

Referencias


Becker, E W (1994) Microalgae: Biotechnology and Microbiology, Cambridge University Press, Cambridge

Ben-Amotz, A, Avron M (1983) On the factors which determine massive-carotene accumulation and its industrial potential. Annual Review of Microbiology 37: 95-119

Boussiba, S (2000) Carotenogenesis in the green alga Haematococcus pluvialis: cellular physiology and stress response. Physiologia Plantarum 108: 111-117

Boussiba, S, Bing W, Yuan J-P, Zarka A, Feng C (1999) Changes in pigments profile in the green alga Haeamtococcus pluvialis exposed to environmental stresses. Biotechnology Letters 21: 601-604

Brinda, BR, Sarada R, Sandesh Kamath B, Ravishankar GA (2004) Accumulation of astaxanthin in flagellated cells of Haematococcus pluvialis - cultural and regulatory aspects. Current Science 87: 1290-1295

Bubrick, P (1991) Production of astaxanthin from Haematococcus. Bioresource Technology 38: 237-239

Chaumont, D, Thèpenier C (1995) Carotenoid content in growing cells of Haematococcus pluvialis during a sunlight cycle. J. Applied Phycology 7: 529-537

Cifuentes, A, González M, Vargas S, Hoeneisen M, González N (2003) Optimization of biomass, total carotenoids and astaxanthin production in Haematococcus pluvialis Flotow strain Steptoe (Nevada, USA) under laboratory conditions. Biology Research 36: 343-357

Dalay, MC, Imamoglu, E, Demirel Z (2007) Agricultural fertilizers as economical alternative for cultivation of Haematococcus pluvialis. J Microbiology Biotechnology 17: 393-7

Davis, BH (1976) Carotenoids. En: TW Goodwin (ed.) Chemistry and Biochemistry of Plant Pigments, Vol. 2, pp. 38-165. Academy Press, London

Del Río, E, Acién F, García-Malea M, Rivas J, Molina-Grima E, Guerrero M (2008) Efficiency assessment of the one-step production of astaxanthin by the microalga Haematococcus pluvialis. Biotechnology & Bioengineering 100 (2): 397-402

Elahee, KB, Poinapen D (2006) Effects of static magnetic fields on growth of Paramecium caudatum. Bioelectromagnetics 27: 26-34

García-Malea, M, Acién F, Del Río E, Fernández J, Cerón M, Guerrero M, Molina-Grima E (2009) Production of astaxanthin by Haematococcus pluvialis: Taking the one-step system outdoors. Biotechnology& Bioenergy 102 (2): 651-7

Göksan, T, Ak I (2006) Vegetative growth of the green alga Haematococcus pluvialis cultivated on different light-path lengths. Asian Journal of Plant Sciences 5: 455-460

Gómez, L, Pérez García N, García Rodríguez JL, Willson J

(2007) Cultivo acelerado de microalgas con el uso de un CM estático. Revista Tecnología Química, Número Especial

Goodwin, T W, Jamikorn M (1954) Carotenoid synthesis in the alga Haematococcus pluvialis. Biochemistry. J. 57: 376-381

Grunewald, K, Hagen C, Braune W (1997) Secondary carotenoid accumulation in flagellates of the green alga Haematococcus lacustris. European. J. of Phycology 32: 387-392

Guerin, M, Huntley ME, Olaizola M (2003) Haematococcus astaxanthin: applications for human health and nutrition. Trends in Biotechnology 21: 210-216

Hagen, C, Siegmund S, Braune W (2002) Ultrastructural and chemical changes in the cell wall of Haematococcus pluvialis (Volvocales, Chlorophyta) during aplanospore formation. European J. Phycology 37: 217-226

Hipkin, CR, Syrett PJ (1977) Some effects of nitrogen-starvation on nitrogen and carbohydrate metabolism in Anksitrodesmus braunii. Planta 133: 209-214

Kamath, B, Srikanta B, Dharmesh S, Sarada R, Ravishankar G

(2008) Ulcer preventive and antioxidative properties of astaxanthin from Haematococcus pluvialis. European J of Pharmacoogyl 590: 387-95

Kang, C, Sim S (2008) Direct extraction of astaxanthin from Haematococcus culture using vegetable oils. Biotechnology Letters 30: 441-4

Kobayashi, M, Kakizono T, Nagai S (1991) Astaxanthin production by a green alga Haematococcus pluvialis accompanied with morphological changes in acetate media J. of Fermentation Bioengineering 71: 335-339

Kobayashi, M, Kakizono T, Nagai S (1993) Enhanced carotenoid byosynthesis by oxidative stress in acetate-induced cyst cells of a green unicellular alga, Haematococcus pluvialis. Applied and Environmental Microbiology 59: 867-873

Kobayashi, M, Okada T (2000) Protective role of astaxanthin against UV B irradiation in the green alga Haematococcus pluvialis. Biotechnology Letters 22: 177-181

Koch, CL M, Sommarin M, Persson BR, Salford LG, Eberhardt JL (2003) Interaction between weak low frequency magnetic fields and cell membranes. Bioelectromagnetics 24: 395-402

Li, ZY, Guo SY, Li L, Cai MY (2007) Effects of electromagnetic field on the batch cultivation and nutritional composition of Spirulina platensis in an air-lift photobioreactor. Bioresource Technology 98: 700-705

Nozaki, H (2003) Flagelate green algae. En: Freshwater algae of North America, J D Wehr, R G Sheath (Eds), NY, pp. 224-252

Olaizola, M (2000) Commercial production of astaxanthin from Haematococcus pluvialis using 25,000-liter outdoor photobioreactors. J. of Applied Phycology 12: 499-506

OMS (2008) Los campos electromagnéticos: Normas y directrices. Organización Mundial de la Salud

Orosa, M, Franqueira, D, Cid A, Abalde J (2001a) Carotenoid accumulation in Haematococcus pluvialis in mixotrophic growth. Biotechnology Letters 23: 373-378

Orosa, M, Franqueira D, Cid A, Abalde J (2005) Analysis and enhancement of astaxanthin accumulation in Haematococcus pluvialis. Bioresource Technology 96: 373-378

Orosa, M, Valero JF, Herrero C, Abalde J (2001b) Comparison of the accumulation of astaxanthin in Haematococcus pluvialis and other green microalgae under N-starvation and high light conditions. Biotechnology Letters 23: 1079-1085

Piorreck, M, Baasch KH, Pohl P (1984) Biomass production, total protein, chlorophylls, lipids and fatty acids of freshwater green and blue green algae under different nitrogen regimes. Phytochemistry 23: 207-216

Sarada, R, Bhattacharya S, Ravishankar GA (2002) Optimization of culture conditions for growth of the green alga Haematococcus pluvialis. World J. of Microbiology Biotechnology 18: 517-521

Sedmak, JJ, Weerasinghe DK, Jolly SO (1990) Extraction and quantification of astaxanthin from Phaffia rhodozyma. Biotechnology &Technology 4: 107-112

Sheng-Bing, W, Fen C, Sommerfield M, Quian H (2004) Proteomic analysis of molecular response to oxidative stress by the green alga Haematococcus pluvialis (Chlorophyceae). Planta 220: 17-29

Singh, SS, Tiwari SP, Abraham J, Rai S, Rai AK (1994) Magnetobiological effects on a cyanobacterium Anabena doliolum. Electro Magnetobiology 13: 227-235

Sonneveld, A, Duysens LNM, Moerdijk A (1980) Magnetic field-induced increase in chlorophyll a delayed fluorescence of photosystem II: A 100- to 200-ns component between 4.2

and 300 K (photosynthesis/primary acceptor W/ luminescence/radical pair mechanism/primary donor P680). Proceedings of National Academy Science USA 77: 5889-5893

Starr, RC, Zeikus JA (1987) UTEX-The culture collection of algae at the University of Texas at Austin. J. of Phycoogy. 29: 1-106

Stewart, J, Lignell A, Pettersson A, Elfving E, Soni M (2008) Safety assessment of astaxanthin-rich microalgae biomass: Acute and subchronic toxicity studies in rats. Food Chemistry Toxicology 46: 3030-6

Thompson, RH, Wujek DE (1989) Haematococcus carocellus sp. Nov. (Haematococcaceae, Chlorophyta) from the United States. Phycologia 28: 268-270

Torzillo, GT, Goksan T, Isik O, Gokpinar (2005) Photon irradiance required to support optimal growth and interrelation between irradiance and pigment composition in the green alga Haematococcus pluvialis. European J. Phycology 40: 233-240

Triki, A, Maillard P, Gudin C (1997) Gametogenesis in Haematococcus pluvialis Flotow (Volvocales, Chlorophyta). Phycologia 36: 190-194

Vidhyavathi, R, Venkatachalam L, Sarada R, Ravishankar G (2008) Regulation of carotenoid biosynthetic genes expression and carotenoid accumulation in the green alga Haematococcus pluvialis under nutrient stress conditions. J. of Experimental Botanic 59: 1409-18

Zhang, X, Pan L, Wei X, Gao H, Liu J (2007) Impact of astaxanthin-enriched algal powder of Haematococcus pluvialis on memory improvement in BALB/c mice. Environmental Geochemical Health 29: 483-9

Zhi-Yong, L, Si-Yuan G, Lin L, Miao-Yan C (2007) Effects of electromagnetic field on the batch cultivation and nutritional composition of Spirulina platensis in an air-lift photobioreactor. Bioresource Technology 98 700-705




Copyright (c) 2016 Biotecnología Vegetal

Biotecnología Vegetal eISSN 2074-8647, RNPS: 2154. ISSN 1609-1841, RNPS: 0397 Editada por: Instituto de Biotecnología de las Plantas. Universidad Central Marta Abreu de Las Villas. Carretera a Camajuaní km 5.5, Santa Clara, Villa Clara, Cuba CP 54 830 Tel: 53 42200124, e-mail: info@ibp.co.cu

Licencia Creative Commons
Biotecnología Vegetal
está bajo una Licencia Creative Commons Atribución-NoComercial 4.0 Internacional.