Empleo de métodos biotecnológicos en la producción de semilla de papa

Janet Igarza Castro, Daniel Agramonte, Yelenys Alvarado-Capó, Manuel de Feria, T. Pugh

Resumen


La papa es un cultivo de gran importancia económica. A nivel mundial, la propagación de papa mediante el cultivo in vitro de yemas axilares se utiliza comúnmente para la producción de plantas in vitro y microtubérculos. Ambos constituyen el material vegetal núcleo de un programa de producción de semilla de papa. El presente trabajo se realizó con el objetivo de presentar una revisión de la literatura científica sobre la propagación de papa por métodos biotecnológicos. Además, se describen las principales características del cultivo así como de los procesos de tuberización en condiciones naturales e in vitro.

Palabras clave: microtubérculos, minitubérculos, plantas in vitro, Sistemas de Inmersión Temporal.


Texto completo:

PDF HTML

Referencias


Abdala, G, G Castro, M M Guifiazti, R Tizio, O Miersch (1996) Occurrence of jasmonic acid in organs of Solanum tuberosum L. and its effect on tuberization. Plant Growth Regulation 19: 139-143

Agramonte, D (1999) Métodos biotecnológicos para la producción de semilla original de papa (Solanum tuberosum L.). Tesis para aspirar al Grado Científico de Doctor en Ciencias Agrícolas. Universidad Central Marta Abreu de Las Villas, Instituto de Biotecnología de las Plantas. Cuba

Ahloowalia, BS (1994) Production and performance of potato mini-tubers. Euphytica 75:163-72

Aitken_Christie, J (1991) Automation. En: Debergh PC, Zimmerman RJ (eds). Micropropagation: Technology and Application, pp. 363_388. Kluwer Academic Publishers. Dordrecht

Aitken_Christie, J, Jones C (1987) Towards automation: radiate pine shoot hedges in vitro. Plant Cell Tiss. Org. Cult. 8: 185_196

Aitken-Christie, J, Kozai T, Smith MAL (1995) Automation and Environmental Control in Plant Tissue Culture. Kluwer Academic Publishers Dordrecht

Akita, M, Takayama S (1994a) Induction and development of potato tubers in jar fermentor. Plant Cell Tissue and Organ Culture 36: 177-182

Akita, M, S Takayama (1994b) Stimulation of potato (Solanum tuberosum L.) tuberization by semicontinuous liquid medium surface level control. Plant Cell Report 13: 184-187

Akita, M, Takayama, S (1993) Stimulation of potato (Solanum tuberosum L.) tuberization by semicontinuous liquid medium surface level control. Plant Cell Rep 13: 184-187

Akita, M, S Takayama (1988) Mass propagation of potato tubers using jar fermentor

Akita, M, Y Ohta (1998) A simple method for mass propagation of potato (Solanum tuberosum L.) using a bioreactor without forced aeration. Plant Cell Reports 18: 284-287

Aragón, C E, Escalona M, Capote I, Pina D, Cejas I, González-Olmedo J (2004) Evaluación del efecto de las condiciones generadas por Biorreactores de inmersión temporal sobre enzimas y procesos clave del metabolismo del carbono en plantas in vitro de plátano cv. CEMSA ¾. Biotecnología Vegetal 4 (3): 147-152

Aragón, C E, Escalona Maritza, Capote Iris, Cejas Inaudis, Rodríguez R, Sandoval J, Roels Sophie, Debergh P, González-Olmedo, J L (2006) Aspectos metabólicos del crecimiento y desarrollo de las plántulas de plátano (CEMSA ¾) micropropagadas en biorreactores de inmersión temporal (BIT). Cultivos Tropicales 27(1): 39-44

Aragón, C, Carvalho, L, González, J, Escalona, M, Amancio, S (2009) Distinct patterns of responses in sugarcane plantlets (Saccharum spp. hybrid) micropropagated in Jell Medium (JM) and by Temporary Immersion Bioreactors (TIB). Acta Horticulturae 812: 441- 446

Aragón, CE, Maritza Escalona, Rodríguez R, Cañal MJ, Capote I, Pina D, González-Olmedo J (2010) Effect of sucrose, light, and carbon dioxide on plantain micropropagation in temporary immersion bioreactors. In Vitro Cell.Dev.Biol.—Plant 46: 89_94

Arigita, L, González A, Tamés RS (2002) Influence of CO2 and sucrose on photosynthesis and transpiration of Actinidia deliciosa explants cultured in vitro. Physiol. Plant 115: 166_173

Ashraf, Badr, Paul Angers, Yves Desjardins (2011) Metabolic profiling of photoautotrophic and photomixotrophic potato plantlets (Solanum tuberosum) provides new insights into acclimatization. Plant Cell Tiss Organ Cult 107: 13_24

Aslam, A, Ali A, Naveed NH, Saleem A, Iqba l J (2011) Effect of interaction of 6-benzyl aminopurine (BA) and sucrose for efficient microtuberization of two elite potato (Solanum tuberosum L.) cultivars, `Desirée' and `Cardinal'. African Journal of Biotechnology 10(59): 12738-12744

Barker, WG (1953) A method for the in vitro culturing of potato tubers. Science 118: 384_385

Bolandi, A R, Hamidi H, Ghavidel R A (2011) The effects of size and microtuber dormancy on production of potato minitubers american-eurasian. J. Agric. Environ. Sci. 10 (2): 169-173

Bou-Torrent, J, Martínez-García JF, García-Martínez JL, Prat S (2011) Gibberellin A1 metabolism contributes to the control of photoperiod-mediated tuberization in potato. PLoS ONE 6(9): e24458

Cabrera, M, Gómez R, Rodríguez S, López J, Cabrera AR, Basail M, Santos A, Mederos V, Rodríguez G (2008) Multiplicación in vitro de segmentos nodales del clon de ñame Blanco de Guinea (Dioscorea cayenensis- D.rotundata) en sistemas de cultivo

semiautomatizado. Rev Colombiana Biotecnología 8(2): 54-61

Calderón, AL, Valvuena R, Hidalgo R, Moreno JD (2008) Microtuberización in vitro de siete accesiones de papa de la colección central colombiana. Acta Agronómica (Palmira) 57(3): 175-180

Castro, D (2001) Propagación mixotrófica de Eucaliptus grandis Hill ex Maiden en biorreactores de inmersión temporal. Tesis para aspirar al Grado Científico de Doctor en Ciencias Agrícolas. Universidad de Ciego de Ávila, Centro de Bioplantas. Cuba

Chun, X P, Chakrabarty D, Joo E H, Yoeup K P (2003) A simple method for mass production of potato microtubers using a bioreactor system. Current Science 84 (8): 25

Coleman, WK, Donnelly, DJ, Coleman, S E (2001) Potato microtubers as research tools: a review. American Journal of Potato Research 78: 47-55

Cutter, EG (1978) Structure and development of the potato plant. En: JD Ivins, FL Milthorpe (Eds.). The Growth of the Potato, pp. 99_113.Butterworth. London

Daquinta, M, Espinosa P, Escalona M, Rodríguez R, Guerra M (2001) Bromeliad micropropagation in temporaly inmersion system. Journal of the Bromeliad Society 51(2): 80-85

De Feria, M, Jiménez E, Barbón R, Capote A, Chávez M, Quiala E (2003) Effect of dissolved oxygen concentration on differentiation of somatic embryos of Coffea arabica cv. Catimor 9722. Plant Cell, Tissue and Organ Culture 72: 1_6

Debergh P (1983) Effects of agar brand and concentration on the tissue culture medium. Physiol. Plant. 59: 270-276

Desjardins, Y (1995) Photosynthesis in vitro- on the factors regulating CO2 assimilation in micropropagation systems. Acta Hort. 393: 45-59

Dobranszki, J, Mandi M (1993 Induction of in vitro tuberization by short day period and dark treatment of potato shoots grown on hormone-free medium. Acta Biol Hung 44: 411_420

Donnelly, DJ, Coleman WK, Coleman SE (2003) Potato microtuber production and performance. Am. J. Potato Res. 80: 103-115

Ebadi, M, Iranbakhsh A (2011) The induction and growth of potato (Solanum tuberosum L.) microtubers (sante cultivar) in response to the different concentrations of 6-benzylaminopurine and sucrose. African Journal of Biotechnology 10(52): 10626-10635

Escalona, M (2006) Temporary immersion beats traditional techniques on all fronts. Prophyta Annual 48-49

Escalona, M, Lorenzo JC, González B, Daquinta M, González JL, Desjardins Y, Borroto CG (1999) Pineapple (Ananas comosus L. Merr) micropropagation in temporary immersion systems. Plant Cell Rep. 18: 743-748

Escalona, M, Lorenzo J, Borroto C, Daquinta M (2003) Procedimiento y equipo para la propagación de plantas por inmersión temporal. Patente 2744. La Habana

Estrada, R, Tovar P, Dodds JH(1986) Induction of in vitro tubers in a broad range of potato genotypes. Plant Cell Tiss. Org. Cult. 7: 3_10

Estrada-Luna, AA, Davies FT, Egilla JN (2001) Physiological changes and growth of micropropagated chile ancho pepper plantlets during acclimatization and post-acclimatization. Plant Cell, Tiss. Organ Cult. 66: 17-24

Etienne, E, Berthouly M (2002) Temporary immersion systems in plant micropropagation. Plant Cell, Tiss. Organ Cult. 69: 215-231

Etienne, H, Lartaud M, Michaux-Ferriere N, Carron M P, Berthouly M, Teisson C (1997) Improvement of somatic embryogenesis in Hevea brassiliensis (Mull:Arg.) using the temporary immersion technique. In vitro Cell. Dev. Biol. 33: 81-87

Ewing, EE, Struik PC (1992) Tuber formation in potato: induction, initiation and growth. Hort Rev 14: 89_198

FAO (2008) Año Internacional de la Papa. [En línea] En: http://www.potato2008.org/es/index.html. Consultado 23 noviembre 2010

FAOSTAT (2010) Venezuela Producción de Papa. [En línea] En: http://FAOSTAT. FAO.org/site/567/ Consultado 23 Nov 2010

Fujiwara, K, Kiras S, Kozai T (1995) Contribution of photosynthesis to dry weight increase of in vitro potato culture under different CO2 concentrations. Acta Hort. 393: 119-126

García-Flórez, M, Portela-Ramírez A, Flórez-Roncancio VJ (2009) Sustancias con actividad citoquinínica estimulan la brotación de yemas en tubérculos de papa. Bragantia, Campinas 68 (3): 555-562

Garner, N, Blake J (1989) The induction and development of potato microtubers in vitro on media free of growth regulating substances. Ann. Bot. 63: 663-674

Gopal, JL, Minocha HS, Dhaliwa l (1998) Microtuberization in potato (Solanum tuberosum L.). Plant Cell Reports 17: 794_798

Gopal, J, Chamail A, Sarkar D (2004) In vitro production of microtubers for conservation of potato germoplasma: effect of genotype, abscisic acid and sucrose. In vitro Cell Dev. Plant 40: 485-490

Harvey, BMR, Crothers SH, Watson S, Lee HC (1992) Heat inhibition of tuber development in potato (Solanum tuberosum L.): effect on microtuber formation in vitro. Potato Research 35: 183-190

Hawkes, JG (1990) The potato: evolution, biodiversity and genetic resources. Belhaven Press. London

Hawkes, JG (1994) Origin of the cultivated potatoes and species relationships. En: Bradshaw JE, Mackay GR (eds.) Potato Genetics, pp. 3_42. CAB International. Wallingford

Hdider, C, Desjardins Y (1994) Effects of sucrose on photosynthesis and phosphoenolpyruvate carboxylase activity of in vitro cultured strawberry plantlets. Plant Cell Tissue Org Cult 36: 27_33

Hoque, M E (2010) In vitro tuberization in potato (Solanum tuberosum L.). Plant Omics Journal 3(1): 7-11

Hosaka, K, Hanneman RE (1988) The origin of the cultivated tetraploid potato based on chloroplast DNA. Theor Appl Genet 76 (2): 172-176

Huamán, ZA, Golmirzaie T, W Amoros (1997) The Potato. En: Dominic Fuccillo, Linda Sears Paul Stapleton (eds). Biodiversity in trust: conservation and use of plant genetic resources in CGIAR Centres. Chapter 2, pp. 21-28. University Press Cambridge

Huamán, Z (1986) Botánica sistemática y morfología de la Papa. Boletín de Información Técnica 6. Centro Internacional de la Papa. Lima

Huamán, Z (2007) Descriptores morfológicos de la papa (Solanum tuberosum L.). Centro de la conservación de la biodiversidad agrícola de Tenerife. CCBAT. Tenerife

Hussey, G (1986) Problems and prospects in the in vitro propagation of herbaceous plants. En: Withers LA y Alderson PG (eds) Plant Tissue Culture and its Agricultural Applications, pp. 69_84. Butterworths Boston

Hussey, G, Stacey NJ (1984) Factors affecting the formation of in vitro tubers of potato (Solanum tuberosum L.). Ann Bot 53: 565-578

Jackson, SD (1999) Multiple Signaling Pathways Control Tuber Induction in Potato. Plant Physiol.119: 1-8

Jackson, SD, Prat S (1996) Control of tuberisation in potato by gibberellins and phytochrome B. Physiol Plant 98: 407-412

Jay, V, Genestier, S Courduroux, JC (1992) Bioreactor studies on the effect of dissolved oxygen concentrations on growth and differentiation of carrot (Daucus carota L.) cell cultures. Plant Cell Rep. 11: 605_608

Jiménez, E, Pérez J, Gil V, Herrera J, García L, Alonso E (1995) Sistema para la propagación de la caña de azúcar. En: Estrada M, Riego E, Limonta E, Tellez P, Fuente J (Eds). Avances en Biotecnología Moderna, pp.11-20.Elfos Scientiae. La Habana

Jiménez, E, Pérez N, De Feria M, Barbón R, Capote A, Chávez M, Quiala E, Pérez J (1999) Improved production of potato microtubers using a temporary immersio system. Plant Cell, Tissue and Organ Culture 59: 19-23

Jiménez-Terry, F, Agramonte D, Pérez M, León M, Alvarado- Capó Y (2011) Conservación de minitubérculos de papa con el uso de zeolita en polvo. Biotecnología Vegetal 11 (2): 89 _ 98

Jiménez-Terry, F (2000) Aclimatización de plantas in vitro y producción de minitubérculos de papa (Solanum tuberosum L.) en casas de cultivo. Tesis para optar al grado científico de Magister Scientiae en Biotecnología Vegetal. Instituto de Biotecnología de las Plantas. Universidad Central Marta Abreu de Las Villas. Santa Clara, Cuba

Jiménez, E, Pérez N, De Feria M, Barbón R, Capote A, Chávez M, Quiala E, Pérez J (1999) Improved production of potato microtubers using a temporary immersion system. Plant Cell, Tissue and Organ Culture 59: 19-23

Jiménez-Terry, F, Agramonte D, Pérez Ponce JN, Ramírez D, Gutiérrez O, Pérez M (2001) Aclimatización de plantas in vitro de Solanum tuberosum (L.) variedad `Desirée'. Biotecnología vegetal 1 (2): 103-108

Jiménez-Terry, F, Agramonte D, Pérez M, León M, Rodríguez M, De Feria M, Y Alvarado-Capó (2010) Producción de minitubérculos de papa var. `Desirée' en casa de cultivo con sustrato zeolita a partir de plantas cultivadas in vitro. Biotecnología vegetal 10 (4): 219-228

Kamarainen, Karppinen, T, E Virtanen, VM Rokka, A M Pirttila (2010) Novel bioreactor technology for mass propagation of potato microtubers. Plant Cell Tiss Organ Cult 101: 245_249

KanwaL A, Ali A, Shoaib K (2006) In vitro microtuberization of potato (Solanum tuberosum L.)

Cultivar Kuroda— a new variety in Pakistan. Int. J. Agri. Biol. 8 (3): 337_340

Kawakami, J, Iwamak T, Hasegawa T, Jitsuyama Y (2003) Growth and yield of potato plants grown from microtubers in fields. American J. Potato Res. 80: 371-378

Khuri, S, Moorby J (1995) Investigation into the role of sucrose in potato cv. `Estima' microtuber production in vitro. Ann Bot 75: 295-303

Király, I, Balla I, Jakab J, Tamás L, Sárvári E (2001) Responses of the photosynthetic system and peroxidase activity to the rooting conditions of osk micropropagation. Plant Cell Tissue Organ Cult. 66: 155_158

Kubota, C (2001) Concepts and background of photoautotrophic micropropagation. En: Morohoshi N, Komamine A (eds), Molecular breeding of woody plants, pp. 325_334. Elsevier. Amsterdam

Lago, CL (1991) Cultivo de tejidos para la producción de semilla básica de papa. En: Roca W, LA Mrogrinski (Eds). Cultivo de tejidos en la Agricultura, fundamentos y aplicaciones. CIAT. Cali

Lakhoua, L, O Ellouze (1993) Utilisation des microtuber cules produits in vitro pour la production de semences de pomme de terre (Solanum tuberosum L.). En: Aupelf-Uref (Ed.) Le progres genetique et l'inventaire des genes, pp. 233-236. John Libbey Eurotext. Paris

Lazzeri, P, Hildebrand D, Collins G (1987) Soybean somatic embryogenesis: effects of nutritional, physical and chemical factors. Plant Cell Tiss. Org. Cult. 10: 209-220

Leclerc Y, Donnelly DJ, Seabrook JE (1994) Microtuberization of layered shoots and nodal cuttings of potato: the influence of growth regulators and incubation periods. Plant Cell, Tissue and Organ Culture 37: 113-120

Lewis, CE, JRL Walker, JE Lancaster, AJ Conner (1998) Upregulation of antocyanin, flavonoid and phenolic acid biosyntesis a potato minitubers in vitro. Aust J Plant PhysioI 25: 915- 922

Lommen, WJ (1999) Causes for low tuber yields of transplants from in vitro potato plantlets of early cultivars after field planting. Journal of Agricultural Science 133: 275-284

Lommen, WJ, Struik PC (1992) Production of potato minitubers by repeated harvesting: effects of crop husbandry on yield parameters. Potato Research 35: 419-432

Lommen, WJ, Struik PC (1994) Field performance of potato minitubers with different fresh weights and conventional seed tubers: crop establishment and yield formation. Potato Res. 37: 301-313

Lommen, WJ, (1999) Causes for low tuber yields of transplants from in vitro potato plantlets of early cultivars after field planting. Journal of Agricultural Science 133: 275-284

Montoya, N, Castro D, Díaz J, Ríos D (2008) Tuberización in vitro de papa (Solanum tuberosum L.), variedad Diacol Capiro, en Biorreactores de Inmersión Temporal y evaluación de su comportamiento en campo. CIENCIA 16(3): 288 _ 295

Naik, PS, Karihaloo JL (2007) Micropropagation for production of quality potato seed in Asia-Pacific. Asia-Pacific Consortium on Agricultural Biotechnology, New Delhi, India

Navarro, C, Abelenda JA, Cruz-Oró E, Cuéllar CA, Tamaki S, Silva J, Shimamoto K, Prat S (2011) Control of flowering and storage organ formation in potato by FLOWERING LOCUS T. Nature 478 (7367): 119-22

Ochoa, C 2001) La Papa de Sudamérica: Bolivia. Primera Edición. Prural. La Paz

Oparka, KJ (1985) Changes in partitioning of current assimilate during tuber bulking in potato (Solanum tuberosum L.) cv. Maris Piper. Ann. Bot. 55: 705_713

Orellana, P (1998) Propagación vía organogénesis. En: Pérez, J (Ed). Propagación y mejora genética de plantas por biotecnología, pp. 151-176. Instituto de Biotecnología de las Plantas. Universidad Central Marta Abreu de Las Villas. Santa Clara

Otroshy, M, Nazarian F, Struik PC (2009) Effects of temperature fluctuation during in vitro phase on in vitro microtuber production in different cultivars of potato (Solanum tuberosum L.). Plant Cell Tiss Organ Cult 98: 213_218

Percival, GC (1999) The inuence of light upon glycoalkaloid and chlorophyll accumulation in potato tubers (Solanum tuberosum L.). Plant Science 145: 99_107

Pereira, JES, de Franca RB, de M Dantas, AC, Fortes, GRL (2005) Influência do número de gemas, presença ou ausência de folhas e posição do explante na multiplicação in vitro da batata. Horticultura Brasileira 23(1): 86-89

Pérez-Alonso, N, de Feria M, Jimenez E, Capote A, Chávez M, Quiala E (2001) Empleo de Sistemas de Inmersión Temporal para la producción a gran

escala de tubérculos in vitro de Solanum tuberosum L. var. Atlantic y estudio de su comportamiento en campo. Biotecnología Vegetal 1: 17-21

Prat, S, Frommer WB, Höfgen R, Keil M, Kossmann J, Köster-Töpfer M, Liu XJ, Müller B, Peña-Cortés M, Rocha-Rosa M, Sánchez-Serrano JJ, Sonnewald U, Willmitzer L (1990) Gene expression during tuber development in potato plants. FEBS Lett. 286: 334_338

Pruski, K, Astatkie T, Duplessis P, Stewart L, Nowak J, Struik PC (2003) Manipulation of microtubers for direct eld utilization in seed production. Am. J. Potato Res. 80: 173-181

Rafique, T, Jafar M I, Hasnain J, Abbas M (2004) In vitro studies on microtuber Induction in potato. Int. J. Agri. Biol. 6 (2): 6

Raíces, M, Ulloa RM, MacIntosh GC, Crespi M, Téllez-Iñón MT (2003) StCDPK1 is expressed in potato stolon tips and is induced by high sucrose concentration. J Exp Bot 54: 2589_2591

Ranalli, P, F Bassi, G Ruaro, G Mandolino (1994) Microtuber and minituber production and field performance compared with normal tubers. Potato Res. 37: 383-391

Ritter, E, Angulo B, Riga P, Herran C, Relluso J, San Jose, M (2001) Comparison of hydroponic and aeroponic cultivation systems for the production of potato minitubers. Potato Research 44: 127-135

Salas, RJ (1995) Producción de semilla pre-básica de Papa. FONAIAP Divulga, 48

Sarkar, D (2008) The signal transduction pathways controlling in planta tuberization in potato: an emerging synthesis. Plant Cell Rep 27: 1-8

Scherwinski, P, Luces GR (2004) Organogênese de ápices meristemáticos de batata em meios de isolamento e multiplicação in vitro. Horticultura Brasileira 22(2): 197-201

Seabrook, JE, Coleman, S, Levy, D (1993) Effect of photoperiod on in vitro tuberization of potato (Solanum tuberosum L.). Plant Cell, Tissue and Organ Culture 34: 43-51

Sheen, J, Zhou L, Jang JC (1999) Sugars as signaling molecules. Current Opinion in Plant Biology 2: 410-418

Simmons, T, Machado, VS, Coffin, R (1989) The effect of light on in vitro tuberization of potato cultivars. American Potato Journal 66: 843-848

Smith, DL, Krikorian AD (1990) Somatic embryogenesis of carrot in hormone-free medium: external pH control over morphogenesis. American Journal Botany 77: 1634-1647

Struik, P, Lommen W (1990) Production, storage and use of micro- and minitubers. En: Proceedings of the 11th Triennal Conference of the European association for Potato Research, pp. 122-123. Edinburgh

Struik, PC, Lommen WJM (1990) Field performance of minitubers of different sizes. Abstracts 11th Triennial Conference of the European Association for Potato Research, pp. 376-377 EAPR. Edinburgh

Struik, PC, Lommen WJ (1999) Improving the field performance of micro-minitubers. Potato Research 42(3-4): 59-568

Teisson, C, Alvard, D (1999) In vitro production of potato microtubers in liquid medium using temporary immersion. Potato Res.42: 499_504

Teisson, C, Alvard D (1994) A new concept of plant in vitro cultivation liquid medium: temporary immersion. VII Int. Congress IAPTC, Firenze. Book of Abstracts

Tovar, P, Estrada R, Shildre-Rentschler L, Dodds J (1985) Inducción y utilización de tubérculos in vitro de papa. Centro Internacional de la papa 13(4): 5

Van, Huylenbroeck J, de Riek J (1995) Sugar and starch metabolism during ex vitro rooting and acclimatization of micropropagated Spathiphyllum Petite plantlets. Plant Sci. 111: 19-25

Veramendi, J, L Willmitzer, RN Trethewey (1999) In vitro grown potato microtubers are a suitable system for the study of primary carbohydrate metabolism. Plant Phys Biochem 37: 693-697

Vespasiano, B, Campos O (2003) Carbon sources and their osmotic potential in plant tissue culture: does it matter? Scientia Horticulturae 97: 193-202

Villafranca, MJ, Varamendi J, Sota V, Mingo-Castel, AM (1998) Effect of physiological age of mother tuber and number of subcultura on in vitro tuberization of potato (Solanum tuberosum. L.). Plant cell Report 17: 787-790

Viola, R, Roberts AG, Haupt S, Gazzani S, Hancock RD, Marmiroli N, Machray GC, Oparka KJ (2001) Tuberization in potato involves a switch from apoplastic to symplastic phloem unloading. The Plant Cell 13: 385-398

Visser, RGF, Vreugdenhil D, Hendriks T, Jacobsen EJ (1994) Gene expression and carbohydrate content during stolon to tuber transition in potatoes (Solanum tuberosum). Physiologia Plantarum 90: 285-292

Vreugdenhil, D, Boogaard Y, Visser R, de Bruijn SM (1998) Comparison of tuber and shoot formation from in vitro cultured potato explants. Plant Cell, Tissue and Organ Culture 53: 197-204

Vreugdenhil, D, Xu X, Jung CS, van Lammeren AAM, Ewing EE (1999) Initial anatomical changes associated with tuber formation on single- node potato (Solanum tuberosum L.) cuttings: a re-evaluation. Ann Bot 84: 675-680

Wang, P, Hu C (1982) In vitro mass tuberization and virus free seed potato production in Taiwan. Am Potato J 59: 33_37

Wattimena, GA (1983) Micropropagation as an altenative technology for potato production in lndonesia. Ph.D. tesis. Univ Wisconsin-Madison. 202 pp.

Xiao, Y, Niu G, Kozai T (2011) Development and application of photoautotrophic micropropagation plant system. Plant Cell Tiss Organ Cult 105: 149_158

Xu, X, M van Lammeren AA, Vermeer E, Vreugdenhil D (1998) The Role of gibberellin, abscisic acid, and sucrose in the regulation of potato tuber formation in vitro. Plant Physiology 117(2): 575-584

Yu, W, Joyce P, Cameron D, McCown B (2000) Sucrose utilization during potato microtuber growth in bioreactors. Plant Cell Reports 19: 407-413

Zimmerman, RH, Desjardins Y (1995) Enviromenntal effects and their control in plant tissue culture-overview. Acta Horticulturae 393: 11-14

Ziv, M, Shemesh D (1996) Propagation and tuberization of potato bud clusters from bioreactors culture. In vitro Cell. Dev. Biol. Plant. 32: 31-36




Copyright (c) 2016 Biotecnología Vegetal

Biotecnología Vegetal (https://revista.ibp.co.cu) ISSN 1609-1841, RNPS: 0397 (Versión impresa), ISSN 2074-8647, RNPS: 2154 (Versión electrónica) Editada por: Instituto de Biotecnología de las Plantas. Universidad Central Marta Abreu de Las Villas. Carretera a Camajuaní km 5.5, Santa Clara, Villa Clara, Cuba CP 54 830 Tel: 53 (42) 281257, 281268, 281693 Web: https://www.ibp.co.cu e-mail: info@ibp.co.cu          

Licencia de Creative Commons
Biotecnología vegetal está bajo una Licencia de Creative Commons Reconocimiento 4.0 Internacional.