Uso de meta-topolina, una citoquinina no convencional en la multiplicación in vitro de Opuntia stricta Haw.

Lindomar Maria de Souza, Marta Ribeiro Barbosa, Jhonatan Rafael Zárate-Salazar, Flavio Lozano-Isla, Terezinha Rangel Camara

Resumen


El nopal erecto (Opuntia stricta Haw) es una alternativa importante que se utiliza para alimentar a los rumiantes durante períodos prolongados de sequía. El objetivo de esta investigación fue evaluar el efecto de diferentes tipos y concentraciones de citoquininas en los aspectos morfofisiológicos de la multiplicación in vitro de O. stricta. Se cultivaron segmentos de O. stricta en medio de cultivo líquido y semisólido de Murashige y Skoog (MS) con 2.22 o 1.11 µM l-1 de 6-bencilaminopurina (BAP) y 1.11 µM l-1 de meta-Topolina (mT). El experimento se realizó en una sala de crecimiento a 25 ± 2 °C durante un período de 45 días. Se evaluaron la tasa de multiplicación, el índice de formación de brotes, la formación de raíces y callos, la biomasa fresca, la altura, la actividad de las enzimas antioxidantes y el contenido de peróxido de hidrógeno y malondialdehído. El experimento se realizó con un diseño completamente al azar con seis tratamientos y doce repeticiones. Los resultados mostraron que la consistencia del medio de cultivo influyó en el desarrollo de brotes y en la emisión de raíces. El aumento en las concentraciones de BAP resultó en una reducción en la longitud y la biomasa fresca de los brotes y en el sistema radicular. La actividad enzimática y el estrés oxidativo se indujeron con el uso de 6-bencilaminopurina. La micropropagación de O. stricta se mejoró con el uso de mT, verificado a través de brotes con mejor calidad morfofisiológica para la aclimatización con mayor longitud de brotes, enraizamiento y reducción en la aparición de hiperhidricidad, un trastorno morfofisiológico que conduce a grandes pérdidas de micropropagación de esta especie.

 

Palabras clave: anomalías morfofisiológicas, enzima antioxidante, estrés in vitro, hiperhidricidad


Palabras clave


anomalías morfofisiológicas; enzima antioxidante; estrés in vitro; hiperhidricidad

Texto completo:

HTML (English) PDF (English)

Referencias


Aziz AN, Tan BC, Othman RY, Khalid N (2018) Efficient micropropagation protocol and genome size estimation of an important cover crop, Mucuna bracteata DC. ex Kurz. Plant Cell Tissue and Organ Culture 132(2): 267-278; doi: 10.1007/s11240-017-1376-3

Adelberg J, Naylor-Adelberg J (2012) Effects of Cytokinin on Multiplication and Rooting of Aloe barbadensis during Micropropagation on Agar and Liquid Medium. Journal of Medicinalley Active Plants 1(1): 1-5; doi: 10.7275/R5251G4V

Alexieva V, Sergiev I, Mapelli S, Karanov E (2001) The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. Plant, Cell and Environment 24(12): 1337-1344; doi: 10.1046/j.1365-3040.2001.00778.x

Amoo SO, Finnie JF, Van-Staden J (2011) The role of meta-topolins in alleviating micropropagation problems. Plant Growth Regulation 63(2): 197-206; doi: 10.1007/s10725-010-9504-7

Areces-Mallea AE (2017) Leptocereus demissus a New Species from Southwestern Hispaniola. Cactus and Succulent Journal 89(3): 115–121; doi: 10.2985/015.089.0303

Aremu AO, Bairu MW, Doležal K, Finnie JF, Van-Staden J (2012) Topolins: A panacea to plant tissue culture challenges?. Plant Cell, Tissue and Organ Culture 108(1): 1-16; doi: 10.1007/s11240-011-0007-7

Aremu AO, Doležal K, Van-Staden J (2017) New cytokinin-like compounds as a tool to improve rooting and establishment of micropropagated plantlets. Acta horticulturae (1155): 497-504; doi: 10.17660/ActaHortic.2017.1155.73

Bairu MW, Jain N, Stirk WA, Doležal K, Van-Staden J (2009) Solving the problem of shoot-tip necrosis in Harpagophytum procumbens by changing the cytokinin types, calcium and boron concentrations in the medium. South African Journal of Botany 75(1): 122–127; doi: 10.1016/j.sajb.2008.08.006

Bairu MW, Stirk WA, Doležal K, Van-Staden J (2007) Optimizing the micropropagation protocol for the endangered Aloe polyphylla: can meta-topolin and its derivatives serve as replacement for benzyladenine and zeatin?. Plant Cell, Tissue and Organ Culture 90(1): 15-23; doi: 10.1007/s11240-007-9233-4

Balen B, Tkalec M, Štefanić PP, Vidaković-Cifrek Ž, Krsnik-Rasol M (2012) In vitro conditions affect photosynthetic performance and crassulacean acid metabolism in Mammillaria gracilis Pfeiff. tissues. Acta Physiologiae Plantarum 34(5): 1883-1893; doi: 10.1007/s11738-012-0986-y

Barbosa ML, Silva TGFD, Zolnier S, Silva SMSE, Steidle-Neto AJ (2018) The influence of cladode morphology on the canopy formation of forage cactus plants. Revista Caatinga 31(1): 180-190; doi: 10.1590/1983-21252018v31n121rc

Beers RF, Sizer IW (1952) A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. Journal of Biological Chemistry 195(1): 133-140

Camargo SS, Rufato L, Magro M, Souza ALK (2019) Temporary immersion biorreators: efficient technique for the propagation of the ‘Pircinque’ strawberry. Revista Brasileira de Fruticultura 41(1): 00-00; doi: 10.1590/0100-2945(2019)102

Cheng ZJ, Wang L, Sun W, Zhang Y, Zhou C, Su HY, Li W, Sun TT, Zhao XY, Li XG, Cheng Y, Zhao Y, Xie Q, Zhang XS (2013) Pattern of Auxin and Cytokinin Responses for Shoot Meristem Induction Results from the Regulation of Cytokinin Biosynthesis by AUXIN RESPONSE FACTOR3. Plant Physiology 161(1): 240-251; doi: 10.1104/pp.112.203166

Cruz MAL, Silva ADC, Veiga CFM, Silveira V (2009) Biofábricas para produção de mudas por micropropagação: estratégia para o aumento da produtividade de cana-de-açúcar no Rio de Janeiro. Inter Science Place 1(5): 00-00

Csabai J, Nagy ZZ, Mándy AT (2011) In vitro shoot proliferation of Telekia speciosa (Schreb.) Baumg. Induced by different cytokinins. Acta Biologica Hungarica 62(4): 453–462; doi: 10.1556/ABiol.62.2011.4.10

Cuypers A, Hendrix S, Amaral dos Reis R, De Smet S, Deckers J, Gielen H, Jozefczak M, Loix C, Vercampt H, Vangronsveld J, Keunen E (2016) Hydrogen Peroxide, Signaling in Disguise during Metal Phytotoxicity. Frontiers in Plant Science 7: 470; doi: 10.3389/fpls.2016.00470

Davies KM, Albert NW, Zhou Y, Schwinn KE (2018) Functions of Flavonoid and Betalain Pigments in Abiotic Stress Tolerance in Plants. In: Roberts JA, Evan D, McManus MT, Rose JKC (ed). Annual Plant Reviews, pp. 1-41. John Wiley & Sons Ltd, Chichester, UK; doi: 10.1002/9781119312994.apr0604

Emara HA, Nower AA, Hamza EM, El Shaib F (2018) Evaluation of Photomixotrophic Technique and Several Carbohydrate Sources as Affecting Banana Micropropagation. International Journal of Current Microbiology and Applied Sciences 7(10): 788-804; doi: 10.20546/ijcmas.2018.710.088

Erig AC, De Rossi A, Fortes GRL (2002) 6-Benzilaminopurina e ácido indolbutírico na multiplicação in vitro da amoreira-preta (Rubus idaeus L.), cv. Tupy. Ciência Rural 32(5): 765-770; doi: 10.1590/S0103-84782002000500005

Escobar AHA, Villalobos AVM, Villegas MA (1986) Opuntia micropropagation by axillary proliferation. Plant Cell Tissue and Organ Culture 7(3): 269–277; doi: 10.1007/bf00037744

Gao H, Xia X, An L, Xin X, Liang Y (2017) Reversion of hyperhydricity in pink (Dianthus chinensis L.) plantlets by AgNO3 and its associated mechanism during in vitro culture. Plant Science 254: 1–11; doi: 10.1016/j.plantsci.2016.10.008

Gava CAT, Lopes EB (2012) Produção de mudas de palma-forrageira utilizando fragmentos de cladódios. Available in: https://ainfo.cnptia.embrapa.br/digital/bitstream/item/63884/1/INT101.pdf. Accessed 01/12/2018

Gentile A, Frattarelli, Nota P, Condello E, Caboni E (2017) The aromatic cytokinin meta-topolin promotes an in vitro propagation, shoot quality and micrografting in Corylus colurna L.. Plant Cell Tissue and Organ Culture 128(3): 693-703; doi: 10.1007/s11240-016-1150-y

Georgiev V, Ilieva M, Bley T, Pavlov A (2008) Betalain production in plant in vitro systems. Acta Physiologiae Plantarum 30(5): 581–593; doi: 10.1007/s11738-008-0170-6

Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry 48(12): 909-930; doi: 10.1016/j.plaphy.2010.08.016

Gülen H, Çetinkaya C, Kadıoğlu M, Kesici M, Cansev A, Eriş T (2008) Peroxidase Activity and Lipid Peroxidation in Strawberry (Fragaria X ananassa) Plants Under Low Temperature. Journal of Biodiversity and Environmental Sciences 2(6): 95-100

Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics 125(1): 189-198; doi: 10.1016/0003-9861(68)90654-1

Kadota M, Niimi Y (2003) Effects of cytokinin types and their concentrations on shoot proliferation and hyperhydricity in in vitro. Plant Cell, Tissue and Organ Culture 72(3): 261-265; doi: 10.1023/A:1022378511659

Lázaro-Castellanos JO, Mata-Rosas M, González D, Arias S, Reverchon F (2018) In vitro propagation of endangered Mammillaria genus (Cactaceae) species and genetic stability assessment using SSR markers. In Vitro Cellular & Developmental Biology – Plant 54(5): 518-529; doi: 10.1007/s11627-018-9908-z

Lebedev V, Arkaev M, Dremova M, Pozdniakov I, Shestibratov K (2018) Effects of Growth Regulators and Gelling Agents on Ex Vitro Rooting of Raspberry. Plants 8(3): 1-10; doi: 10.3390/plants8010003

Lema-Rumińska J, Kulus D (2014) Micropropagation of cacti-a review. Haseltonia 19: 46-63; doi: 10.2985/026.019.0107

Liu M, Jiang F, Kong X, Tian J, Wu Z, Wu Z (2017) Effects of multiple factors on hyperhydricity of Allium sativum L.. Scientia Horticulturae 217: 285–296; doi: 10.1016/j.scienta.2017.02.010

Madzikane-Mlungwana O, Moyo M, Aremu AO, Plíhalová L, Doležal K, Van-Staden J, Finnie JF (2017) Differential responses to isoprenoid, N6-substituted aromatic cytokinins and indole-3-butyric acid in direct plant regeneration of Eriocephalus africanus. Plant Growth Regulation 82(1): 103-110; doi: 10.1007/s10725-016-0242-3

Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends in Plants Science 7(9): 405–410; doi: 10.1016/S1360-1385(02)02312-9

Muneer S, Park YG, Jeong BR (2018) Red and Blue Light Emitting Diodes (LEDs) Participate in Mitigation of Hyperhydricity in In Vitro-Grown Carnation Genotypes (Dianthus Caryophyllus). Journal of Plant Growth Regulation 37(2): 370–379; doi: 10.1007/s00344-017-9733-3

Murashige T, Skoog F (1962) A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures. Physiologia Plantarum 15(3): 473–497; doi: 10.1111/j.1399-3054.1962.tb08052.x

Naaz A, Hussain SA, Anis M, Alatar AA (2019) Meta-topolin improved micropropagation in Syzygium cumini and acclimatization to ex vitro conditions. Biologia Plantarum 63(1): 174–182; doi: 10.32615/bp.2019.020

Nakano Y, Asada K (1981) Hydrogen Peroxide is Scavenged by Ascorbate-specific Peroxidase in Spinach Chloroplasts. Plant and Cell Physiology 22(5): 867–880; doi: 10.1093/oxfordjournals.pcp.a076232

Pavokovi D, Krsnik-Rasol M (2011) Complex Biochemistry and Biotechnological Production of Betalains. Food Technology and Biotechnology 49(2): 145–155

Peixoto MJA, Carneiro MSS, Souza PZ, Diniz JDN, Souto JS, Campos FAP (2006) Desenvolvimento de Opuntia ficus-indica (L.) Mill em diferentes substratos, após micropropagação in vitro. Acta Sciences Animal Scientiarum 28(1): 17–20; doi: 10.4025/actascianimsci.v28i1.659

Plačková L, Hrdlička J, Smýkalová I, Cvečková M, Novák O, Griga M, Doležal K (2015) Cytokinin profiling of long-term in vitro pea (Pisum sativum L.) shoot cultures. Plant Growth Regulation 77(2): 125–132; doi: 10.1007/s10725-015-0044-z

Quiala E, Matos J, Montalvo G, Feria M, Chávez M, Pérez AC, Alonso, NLP, Barbín R, Kowalski B (2009) In vitro propagation of Pilosocereus robinii (Lemaire) Byles et Rowley, endemic and endangered cactus. Journal of the Professional Association for Cactus Development 11: 18–25

Rahman ZA, Ali MSM, Ghazalli MN, Awang K (2018) Optimization of Culture Media Formulations for Micropropagation of Lepisanthes fruticosa. Biosciences Biotechnology Research Asia 15(1): 51–58; doi: 10.13005/bbra/2607

Rubio-Wilhelmi MM, Sanchez-Rodriguez E, Rosales MA, Begoña B, Rios JJ (2011) Effect of cytokinins on oxidative stress in tobacco plants under nitrogen deficiency. Environmental and Experimental Botany 72(2): 167–173; doi: 10.1016/j.envexpbot.2011.03.005

Santos WM, Souza RMS, Souza ES, Almeida AQ, Antonino ACD (2017) Variabilidade espacial da sazonalidade da chuva no semiárido brasileiro. Journal of Environmental Analysis and Progress 2(4): 368–376; doi: 10.24221/jeap.2.4.2017.1466.368-376

Silva MMA, Souza LM (2017) Respuesta de plantas micropropagadas de Opuntia stricta Haw en aclimatización y campo. Biotecnología Vegetal 17(2): 91-97

Singh A (2015) Micropropagation of Plants. In: Bahadur B, Venkat Rajam M, Sahijram L, Krishnamurthy KV (eds). Plant Biology and Biotechnology, pp. 329–346. Springer, New Delhi; doi: org/10.1007/978-81-322-2283-5_16

Soriano-Santos J, Franco-Zavaleta ME, Pelayo-Zaldívar C, Armella MA (2007) Caracterizacion parcial del pigmento rojo del fruto de la Jiotilla. Revista Mexicana de Ingeniería Química 6(1): 19-25

Tascan A, Adelberg J, Tascan M, Rimando A, Joshee N, Yadav AK (2010) Hyperhydricity and Flavonoid Content of Scutellaria Species In Vitro on Polyester-supported Liquid Culture Systems. HortScience 45(11): 1723–1728; doi: 10.21273/HORTSCI.45.11.1723

Tian J, Jiang F, Wu Z (2015) The apoplastic oxidative burst as a key factor of hyperhydricity in garlic plantlet in vitro. Plant Cell, Tissue and Organ Culture 120(2): 571–584; doi: 10.1007/s11240-014-0623-0

Valero-Aracama C, Kane ME, Wilson SB, Philman NL (2009) Substitution of benzyladenine with meta-topolin during shoot multiplication increases acclimatization of difficult and easy to acclimatize sea oats (Uniola paniculata L.) genotypes. Plant Growth Regulation 60(1): 43-49; doi: 10.1007/s10725-009-9417-5

Vasconcelos AGV, Tomas LF, Camara TR, Willadino L (2012) Hiperidricidade: uma desordem metabólica. Ciência Rural 42(5): 837–844; doi: 10.1590/S0103-84782012000500013

Wang Z, Pote J, Huang B (2003) Responses of Cytokinins, Antioxidant Enzymes, and Lipid Peroxidation in Shoots of Creeping Bentgrass to High Root-zone Temperatures. Journal of the American Society for Horticultural Science 128(5): 648–655; doi: 10.21273/JASHS.128.5.0648

Werbrouck SPO, Jeugt BV, Dewitte W, Prinsen E, Onckelen HAV, Debergh PC (1995) The metabolism of benzyladenine in Spathiphyllum floribundum ‘Schott Petite’ in relation to acclimatisation problems. Plant Cell Reports 14(10): 662–665; doi: 10.1007/BF00232734

Wojtania A (2010) Effect of meta-topolin in vitro propagation of Pelargonium x hortorum and Pelargonium x hederaefolium cultivars. Acta Societatis Botanicorum Poloniae 79(2): 101–106; doi: 10.5586/asbp.2010.013

Wu Z, Chen L J, Long YJ (2009) Analysis of ultrastructure and reactive oxygen species of hyperhydric garlic (Allium sativum L.) shoots. In Vitro Cellular & Developmental Biology - Plant 45(4): 483–490; doi: 10.1007/s11627-008-9180-8

Ziv M (2005) Simple bioreactors for mass propagation of plants. In: Hvoslef-Eide AK, Preil W (eds). Liquid Culture Systems for in vitro Plant Propagation, pp. 79–93. Springer, Dordrecht; doi: 10.1007/s11240-004-6649-y

Zoghlami N, Bouamama B, Khammassi M, Ghorbel A (2012) Genetic stability of long-term micropropagated Opuntia ficus-indica (L.) Mill. plantlets as assessed by molecular tools: Perspectives for in vitro conservation. Industrial Crops and Products 36(1): 59–64; doi: 10.1016/j.indcrop.2011.08.006




Copyright (c) 2019 Biotecnología Vegetal

Biotecnología Vegetal eISSN 2074-8647, RNPS: 2154. ISSN 1609-1841, RNPS: 0397 Editada por: Instituto de Biotecnología de las Plantas. Universidad Central Marta Abreu de Las Villas. Carretera a Camajuaní km 5.5, Santa Clara, Villa Clara, Cuba CP 54 830 Tel: 53 42200124, e-mail: info@ibp.co.cu

Licencia Creative Commons
Biotecnología Vegetal
está bajo una Licencia Creative Commons Atribución-NoComercial 4.0 Internacional.