Rizosfera de tres cultivares de Phaseolus vulgaris L. fuente de bacterias formadoras de endosporas con potencial biotecnológico

Yunel Pérez Hernández, Ana Julia Rondón Castillo, María Caridad Nápoles García, Marlene María Martínez Mora, Yasmary Rubio Fontanills

Resumen


Las Rizobacterias Promotoras del Crecimiento Vegetal constituyen una fuente promisoria de microorganismos, con capacidad para desarrollar nuevos bioplaguicidas que contribuyan al control de plagas, con una base agroecológica y sostenible. El presente trabajo tuvo como objetivo obtener aislados de bacilos formadores de endosporas con potencial biotecnológico a partir de la rizosfera de diferentes cultivares de frijol (Phaseolus vulgaris L.) de tres tipos de suelo. Se realizaron colectas de suelo rizosférico de tres cultivares de frijol presentes en los municipios Colón y Unión de Reyes, de la provincia de Matanzas, Cuba. Las muestras de suelo se cultivaron en Caldo Nutriente y posteriormente se eliminaron las células vegetativas con calor. Se realizaron diluciones seriadas y las muestras se inocularon en medio de cultivo Agar Nutriente. Se seleccionaron colonias bacterianas con diferencias morfológicas y células bacterianas Gram positivas y productoras de endosporas. Las potencialidades antagónicas de los aislados se evaluaron a través de la producción de enzimas líticas como proteasas, lipasas, celulasas, amilasas, quitinasas y/o β-glucanasas y la síntesis de cianuro de hidrógeno. Se conformó una colección de 141 aislados de bacilos Gram positivos formadores de endosporas. El 8% fueron productores de cianuro de hidrógeno, el 57.7% de proteasas, el 19.3% de lipasas, el 56.5% de quitinasas y/o β-glucanasas, el 28.5% de celulasas y el 33.3% de α-amilasas. Estos aislados tienen potencial biotecnológico con aplicación en los sectores agropecuario e industrial.

Palabras clave


agroecología; amilasas; celulasas; HCN; proteasas

Texto completo:

HTML PDF

Referencias


Aktuganov GE, Galimzyanova NF, Melent’ev AI, Kuzmina LY (2007) Extracellular hydrolases of strain Bacillus sp. 739 and their involvement in the lysis of micromycete cell walls. Microbiology Mikrobiologiya 76: 413-420

Alia S, Hameeda S, Shahida M, Iqbala M, Lazarovitse G, Imrana A (2020) Functional characterization of potential PGPR exhibiting broad-spectrum antifungal activity. Microbiological Research 232: 1-17; doi:10.1016/j.micres.2019.126389

Carder JH (1986) Detection and quantitation of cellulase by Congo red staining of substrates in a cup-plate diffusion assay. Analytical Biochemistry 153(1): 75-79

Chaiharn M, Chunhaleuchanon S, Kozo A, Lumyong S (2008) Screening of rhizobacteria for their plant growth promoting activities. MITL Science Technology Journal 8(1): 18-23

Dar GH, Sofi S, Padder SA, Kabli AA (2018) Molecular characterization of rhizobacteria isolated from walnut (Juglans regia) rhizosphere in Western Himalayas and assessment of their plant growth promoting activities. Biodiversitas 19(2): 712-719

De Marco ÉG, Heck K, Martos ET, Van Der Sand ST (2017) Purification and characterization of a thermostable alkaline cellulase produced by Bacillus licheniformis 380 isolated from compost. Annals of the Brazilian Academy of Sciences 89(3): 2359-2370; doi:10.1590/0001-3765201720170408

Dida G (2018) Isolation and characterization of starch degrading rhizobacteria from soil of Jimma University Main Campus, Ethiopia. African Journal of Microbiology Research 12(32): 788-795; doi:10.5897/AJMR2018.8873

Dinesha R, Anandaraj M, Kumar A, Bini YK, Subila KP, Aravind R (2015) Isolation, characterization, and evaluation of multi-trait plant growth promoting rhizobacteria for their growth promoting and disease suppressing effects on ginger. Microbiological Research 173: 34-43; doi:10.1016/j.micres.2015.01.014

dos Santos K, Soares-da-Silvab J, da Silva MC, Tadeid WP, Polanczyke RA, Soares VC (2018) Isolation and molecular characterization of Bacillus thuringiensis found in soils of the Cerrado region of Brazil, and their toxicity to Aedes aegypti larvae. Revista Brasileira de Entomologia 62: 5-12

Duncan B (1955) Multiple ranges and multiple F. Test. Biometrics 11: 1-42

El-Sayed WS, Akhkha A, El-Naggar MY, Elbadry M (2014) In vitro antagonistic activity, plant growth promoting traits and phylogenetic affiliation of rhizobacteria associated with wild plants grown in arid soil. Frontiers Microbio 5: 1-11; doi:10.3389/fmicb.2014.00651

Gaye R (2016) Plant growth-promoting bacteria from Western Australian soils. Tesis en opción al grado científico de Doctor en Ciencias, Universidad de Murdoch, Murdoch, Australia

Geetha K, Rajithasri AB, Bhadraiah B (2014) Isolation of Plant growth promoting rhizobacteria from rhizosphere soils of green gram, biochemical characterization and screening for antifungal activity against pathogenic fungi. International Journal of Pharmaceutical Science Invention 3(9): 47-54

Glick R (2012) Plant growth-promoting bacteria: mechanisms and applications. Scientifica: 1-15; doi:10.6064/2012/963401

Haldar S, Sengupta S (2015) Plant-microbe cross-talk in the rhizosphere: insight and biotechnological potential. Open Microbiol J 9: 1-7

Hernández A, Pérez J, Bosh D, Castro N (2015) Clasificación de los suelos de Cuba. Ediciones INCA, Mayabeque

Johnson C, Bishop AH (1996) A technique for the effective enrichment and isolation of Bacillus thuringiensis. FEMS Microbiology Letters 142: 173-177

Karnwal A (2011) Screening and optimization of extracellular amylase production from plant growth promoting rhizobacteria. Annals Food Science and Technology 12(2): 135-141

Kim SJ, Hoppe HG (1986) Microbial extracellular enzyme detection on agar plates by means of fluorogenic methyl umbelliferyl–substrates. Actes de Colloques 3: 175-183

Laville J, Blumer C, Von Schroetter C, Gaia V, Del fago G, Keel C, Haas D (1998) Characterization of the hcnABC gene cluster encoding hydrogen cyanide synthase and anaerobic regulation by ANR in the strictly aerobic biocontrol agent Pseudomonas fluorescens CHA0. Journal of Bacteriology 180: 3187-3196

Lorck H (1948) Production of hydrocyanic acid by bacteria. Plant Physiology 1(2): 142-146

Martínez E, Cantillo T, García D (2014) Hongos asociados a semillas de Phaseolus vulgaris L. cultivadas en Cuba. Biotecnología Vegetal 14(2): 99-105

Méndez-Bravo A, Cortazar-Murillo EM, Guevara-Avendaño E, Ceballos-Luna O, Rodríguez-Haas B, Kiel-Martínez AL, Hernández-Cristóbal O, Guerrero-Analco JA, Reverchon F (2018) Plant growth-promoting rhizobacteria associated with avocado display antagonistic activity against Phytophthora cinnamoni through volatile emissions. PLoSONE 13(3): e0194665; doi:10.1371/journal.pone.0194665

Menendez E, Garcia-Fraile P, Rivas R (2015) Biotechnological applications of bacterial cellulases. Bioengeneering 2(3): 163-182

Mishra J, Prakash J, Arora N (2016) Role of beneficial soil microbes in sustainable agriculture and environment management. Climate change Environ Sus 4(2): 137-14

Modi K, Patel P, Parmar K (2017) Isolation, Screening and Characterization of PGPR from Rhizosphere of Rice. International Journal of Pure & Applied Bioscience 5(3): 264-270; doi:10.18782/2320-7051.2887

Moreno A, García V, Reyes JL, Vásquez J, Cano P (2018a) Rizobacterias promotoras del crecimiento vegetal: una alternativa de biofertilización para la agricultura sustentable. Revista Colombiana de Biotecnología 20(1): 68-83

Moreno XA, Lobelle L, González J (2018b) Efecto de los bioestimulantes Biobras 16 y Quitomax sobre el cultivo del frijol (Phaseolus vulgaris L.) variedad Delicias-364’ en la agricultura suburbana de Aguada de Pasajeros. Revista científica Agroecosistemas 6(2): 151-160

Mokrani S, Belabid L, Bedjaoui B, Nabti E (2018) Growth stimulation of Phaseolus vulgaris L plantules by strain Bacillus amyloliquefaciens Hla producer of beneficial agricultural enzymes. JOJ Hortic Arboric 2(2): 1-7

Nehra V, Saharan BS, Choudhary M (2016) Evaluation of Brevibacillus brevis as a potential plant growth promoting rhizobacteria for cotton (Gossypium hirsutum) crop. Springerplus 5(1): 948; doi:10.1186/s40064-016-2584-8

Oslo JC, Nottingham PM (1980) Temperature. En: Silliker JH (ed). Microbial Ecology of Foods, Volumen 1: Factors affecting life and death of microorganisms, pp. 1-38. Academic press, London

Pandey A, Nigam P, Soccol CR, Soccol VT, Singh D, Mohan R (2000) Advances in microbial amylases. Biotechnol Appl Biochem 31: 135-152

Przemieniecki SW, Kurowski TP, Damszel M, Krawczyk K, Karwowska A (2018) Effectiveness of the Bacillus sp. SP-A9 strain as a biological control agent for spring wheat (Triticum aestivum L.). J Agr Sci Tech 20: 609-619

Ramachandran V, Jaganathan R, Swathirajan CR (2016) Biocontrol and other beneficial activities of Bacillus subtilis strains isolated from cow dung, soil compost and soil rhizosphere microflora. EC Bacteriology and Virology Research 1(1): 31-35

Rijavec T, Lapanje A (2016) Hydrogen cyanide in the rhizosphere: not suppressing plant pathogens but rather regulating availability of phosphate. Front Microbiol 7: 1-14

Sabaté DC, Pérez C, Petroselli G, Erra-Balsells R, Audisio MC (2018) Biocontrol of Sclerotinia sclerotiorum (Lib.) de Bary on common bean by native lipopeptide-producer Bacillus strains. Microbiological Research 211: 21-30

Saini R, Singh H, Dahiya A (2017) Amylases: Characteristics and industrial applications. Journal of Pharmacognosy and Phytochemistry 6(4): 1865-1871

Saharan BS, Nehra V (2011) Plant Growth Promoting Rhizobacteria: A Critical Review. Life Sciences and Medicine Research 21: 1-30

Salvador CA, Rojas M, Mesa L, Londoño-Larrea P, Villavicencio J, González E (2019) Obtention of cellulases in Ecuador to reduce enzyme costs in sugar cane bagasse hydrolysis. Revista Centro Azúcar 46(1): 18-28

Shebba J, Dhamotharan R, Baskar K (2017) Isolation, screening and characterization of plant growth promoting bacteria and their antifungal effect on Rhizoctonia solani (J.G. Kühn 1858). Adv Plants Agric Res 7(5): 369-375; doi:10.15406/apar.2017.07.00269

Sigarroa A (1985) Biometría y Diseño Experimental. Pueblo y Educación, La Habana, Cuba

Singh R, Kumar M, Mittal A, Kumar P (2016a) Microbial Cellulases in Industrial Applications. Annals of Applied Bio-Sciences 3(4): 24-29

Singh R, Mittal A, Kumar M, Kumar P (2016b) Amylases: A Note on Current Applications. International Research Journal of Biological Sciences 5(11): 27-32

Thakur A, Parikh SC (2018) Screening of Groundnut Plant Associated Rhizobacteria for Multiple Plant Beneficial Plant Growth Promoting Traits. J Plant Pathol Microbiol 9: 457; doi:10.4172/2157-7471.1000457

Thakur D, Kaur M, Mishra A (2017) Isolation and screening of plant growth promoting Bacillus spp. and Pseudomonas spp. and their effect on growth, rhizospheric population and phosphorous concentration of Aloe vera. Journal of Medicinal Plants Studies 5(1): 187-192

Tsegaye Z, Yimam M, Bekele D, Chaniyalew S, Assefa F (2019) Characterization and Identification of native plant growth-promoting bacteria colonizing tef (Eragrostis Tef) rhizosphere during the flowering stage for a production of bio inoculants. Biomed J Sci & Tech Res 22(2): 16444- 16456; doi:10.26717/BJSTR.2019.22.003710

Vejan P, Abdullah R, Khadiran T, Ismail S, Nasrulhaq-Boyce A (2016) Role of plant growth promoting rhizobacteria in agricultural sustainability- A Review. Molecules 21(5): 1-17; doi:10.3390/molecules

Vijay K, Nivedita S (2017) Plant Growth Promoting Rhizobacteria as Growth Promoters for Wheat: A Review. Agri Res & Tech (4): 1-7; doi:10.19080/ARTOAJ.2017.12.555857

Yedidia I, Benhamou N, Chet I (1999) Induction of defense responses in cucumber plants (Cucumis sativus L.) by the biocontrol agent Trichoderma harzianum. Appl Environ Microbiol 65: 1061-1070




Copyright (c) 2021 Biotecnología Vegetal

Biotecnología Vegetal eISSN 2074-8647, RNPS: 2154. ISSN 1609-1841, RNPS: 0397 Editada por: Instituto de Biotecnología de las Plantas. Universidad Central Marta Abreu de Las Villas. Carretera a Camajuaní km 5.5, Santa Clara, Villa Clara, Cuba CP 54 830 Tel: 53 42200124, e-mail: info@ibp.co.cu

Licencia Creative Commons
Biotecnología Vegetal
está bajo una Licencia Creative Commons Atribución-NoComercial 4.0 Internacional.