Rizosfera de tres cultivares de Phaseolus vulgaris L. fuente de bacterias formadoras de endosporas con potencial biotecnológico
Resumen
Palabras clave
Referencias
Aktuganov GE, Galimzyanova NF, Melent’ev AI, Kuzmina LY (2007) Extracellular hydrolases of strain Bacillus sp. 739 and their involvement in the lysis of micromycete cell walls. Microbiology Mikrobiologiya 76: 413-420
Alia S, Hameeda S, Shahida M, Iqbala M, Lazarovitse G, Imrana A (2020) Functional characterization of potential PGPR exhibiting broad-spectrum antifungal activity. Microbiological Research 232: 1-17; doi:10.1016/j.micres.2019.126389
Carder JH (1986) Detection and quantitation of cellulase by Congo red staining of substrates in a cup-plate diffusion assay. Analytical Biochemistry 153(1): 75-79
Chaiharn M, Chunhaleuchanon S, Kozo A, Lumyong S (2008) Screening of rhizobacteria for their plant growth promoting activities. MITL Science Technology Journal 8(1): 18-23
Dar GH, Sofi S, Padder SA, Kabli AA (2018) Molecular characterization of rhizobacteria isolated from walnut (Juglans regia) rhizosphere in Western Himalayas and assessment of their plant growth promoting activities. Biodiversitas 19(2): 712-719
De Marco ÉG, Heck K, Martos ET, Van Der Sand ST (2017) Purification and characterization of a thermostable alkaline cellulase produced by Bacillus licheniformis 380 isolated from compost. Annals of the Brazilian Academy of Sciences 89(3): 2359-2370; doi:10.1590/0001-3765201720170408
Dida G (2018) Isolation and characterization of starch degrading rhizobacteria from soil of Jimma University Main Campus, Ethiopia. African Journal of Microbiology Research 12(32): 788-795; doi:10.5897/AJMR2018.8873
Dinesha R, Anandaraj M, Kumar A, Bini YK, Subila KP, Aravind R (2015) Isolation, characterization, and evaluation of multi-trait plant growth promoting rhizobacteria for their growth promoting and disease suppressing effects on ginger. Microbiological Research 173: 34-43; doi:10.1016/j.micres.2015.01.014
dos Santos K, Soares-da-Silvab J, da Silva MC, Tadeid WP, Polanczyke RA, Soares VC (2018) Isolation and molecular characterization of Bacillus thuringiensis found in soils of the Cerrado region of Brazil, and their toxicity to Aedes aegypti larvae. Revista Brasileira de Entomologia 62: 5-12
Duncan B (1955) Multiple ranges and multiple F. Test. Biometrics 11: 1-42
El-Sayed WS, Akhkha A, El-Naggar MY, Elbadry M (2014) In vitro antagonistic activity, plant growth promoting traits and phylogenetic affiliation of rhizobacteria associated with wild plants grown in arid soil. Frontiers Microbio 5: 1-11; doi:10.3389/fmicb.2014.00651
Gaye R (2016) Plant growth-promoting bacteria from Western Australian soils. Tesis en opción al grado científico de Doctor en Ciencias, Universidad de Murdoch, Murdoch, Australia
Geetha K, Rajithasri AB, Bhadraiah B (2014) Isolation of Plant growth promoting rhizobacteria from rhizosphere soils of green gram, biochemical characterization and screening for antifungal activity against pathogenic fungi. International Journal of Pharmaceutical Science Invention 3(9): 47-54
Glick R (2012) Plant growth-promoting bacteria: mechanisms and applications. Scientifica: 1-15; doi:10.6064/2012/963401
Haldar S, Sengupta S (2015) Plant-microbe cross-talk in the rhizosphere: insight and biotechnological potential. Open Microbiol J 9: 1-7
Hernández A, Pérez J, Bosh D, Castro N (2015) Clasificación de los suelos de Cuba. Ediciones INCA, Mayabeque
Johnson C, Bishop AH (1996) A technique for the effective enrichment and isolation of Bacillus thuringiensis. FEMS Microbiology Letters 142: 173-177
Karnwal A (2011) Screening and optimization of extracellular amylase production from plant growth promoting rhizobacteria. Annals Food Science and Technology 12(2): 135-141
Kim SJ, Hoppe HG (1986) Microbial extracellular enzyme detection on agar plates by means of fluorogenic methyl umbelliferyl–substrates. Actes de Colloques 3: 175-183
Laville J, Blumer C, Von Schroetter C, Gaia V, Del fago G, Keel C, Haas D (1998) Characterization of the hcnABC gene cluster encoding hydrogen cyanide synthase and anaerobic regulation by ANR in the strictly aerobic biocontrol agent Pseudomonas fluorescens CHA0. Journal of Bacteriology 180: 3187-3196
Lorck H (1948) Production of hydrocyanic acid by bacteria. Plant Physiology 1(2): 142-146
Martínez E, Cantillo T, García D (2014) Hongos asociados a semillas de Phaseolus vulgaris L. cultivadas en Cuba. Biotecnología Vegetal 14(2): 99-105
Méndez-Bravo A, Cortazar-Murillo EM, Guevara-Avendaño E, Ceballos-Luna O, Rodríguez-Haas B, Kiel-Martínez AL, Hernández-Cristóbal O, Guerrero-Analco JA, Reverchon F (2018) Plant growth-promoting rhizobacteria associated with avocado display antagonistic activity against Phytophthora cinnamoni through volatile emissions. PLoSONE 13(3): e0194665; doi:10.1371/journal.pone.0194665
Menendez E, Garcia-Fraile P, Rivas R (2015) Biotechnological applications of bacterial cellulases. Bioengeneering 2(3): 163-182
Mishra J, Prakash J, Arora N (2016) Role of beneficial soil microbes in sustainable agriculture and environment management. Climate change Environ Sus 4(2): 137-14
Modi K, Patel P, Parmar K (2017) Isolation, Screening and Characterization of PGPR from Rhizosphere of Rice. International Journal of Pure & Applied Bioscience 5(3): 264-270; doi:10.18782/2320-7051.2887
Moreno A, García V, Reyes JL, Vásquez J, Cano P (2018a) Rizobacterias promotoras del crecimiento vegetal: una alternativa de biofertilización para la agricultura sustentable. Revista Colombiana de Biotecnología 20(1): 68-83
Moreno XA, Lobelle L, González J (2018b) Efecto de los bioestimulantes Biobras 16 y Quitomax sobre el cultivo del frijol (Phaseolus vulgaris L.) variedad Delicias-364’ en la agricultura suburbana de Aguada de Pasajeros. Revista científica Agroecosistemas 6(2): 151-160
Mokrani S, Belabid L, Bedjaoui B, Nabti E (2018) Growth stimulation of Phaseolus vulgaris L plantules by strain Bacillus amyloliquefaciens Hla producer of beneficial agricultural enzymes. JOJ Hortic Arboric 2(2): 1-7
Nehra V, Saharan BS, Choudhary M (2016) Evaluation of Brevibacillus brevis as a potential plant growth promoting rhizobacteria for cotton (Gossypium hirsutum) crop. Springerplus 5(1): 948; doi:10.1186/s40064-016-2584-8
Oslo JC, Nottingham PM (1980) Temperature. En: Silliker JH (ed). Microbial Ecology of Foods, Volumen 1: Factors affecting life and death of microorganisms, pp. 1-38. Academic press, London
Pandey A, Nigam P, Soccol CR, Soccol VT, Singh D, Mohan R (2000) Advances in microbial amylases. Biotechnol Appl Biochem 31: 135-152
Przemieniecki SW, Kurowski TP, Damszel M, Krawczyk K, Karwowska A (2018) Effectiveness of the Bacillus sp. SP-A9 strain as a biological control agent for spring wheat (Triticum aestivum L.). J Agr Sci Tech 20: 609-619
Ramachandran V, Jaganathan R, Swathirajan CR (2016) Biocontrol and other beneficial activities of Bacillus subtilis strains isolated from cow dung, soil compost and soil rhizosphere microflora. EC Bacteriology and Virology Research 1(1): 31-35
Rijavec T, Lapanje A (2016) Hydrogen cyanide in the rhizosphere: not suppressing plant pathogens but rather regulating availability of phosphate. Front Microbiol 7: 1-14
Sabaté DC, Pérez C, Petroselli G, Erra-Balsells R, Audisio MC (2018) Biocontrol of Sclerotinia sclerotiorum (Lib.) de Bary on common bean by native lipopeptide-producer Bacillus strains. Microbiological Research 211: 21-30
Saini R, Singh H, Dahiya A (2017) Amylases: Characteristics and industrial applications. Journal of Pharmacognosy and Phytochemistry 6(4): 1865-1871
Saharan BS, Nehra V (2011) Plant Growth Promoting Rhizobacteria: A Critical Review. Life Sciences and Medicine Research 21: 1-30
Salvador CA, Rojas M, Mesa L, Londoño-Larrea P, Villavicencio J, González E (2019) Obtention of cellulases in Ecuador to reduce enzyme costs in sugar cane bagasse hydrolysis. Revista Centro Azúcar 46(1): 18-28
Shebba J, Dhamotharan R, Baskar K (2017) Isolation, screening and characterization of plant growth promoting bacteria and their antifungal effect on Rhizoctonia solani (J.G. Kühn 1858). Adv Plants Agric Res 7(5): 369-375; doi:10.15406/apar.2017.07.00269
Sigarroa A (1985) Biometría y Diseño Experimental. Pueblo y Educación, La Habana, Cuba
Singh R, Kumar M, Mittal A, Kumar P (2016a) Microbial Cellulases in Industrial Applications. Annals of Applied Bio-Sciences 3(4): 24-29
Singh R, Mittal A, Kumar M, Kumar P (2016b) Amylases: A Note on Current Applications. International Research Journal of Biological Sciences 5(11): 27-32
Thakur A, Parikh SC (2018) Screening of Groundnut Plant Associated Rhizobacteria for Multiple Plant Beneficial Plant Growth Promoting Traits. J Plant Pathol Microbiol 9: 457; doi:10.4172/2157-7471.1000457
Thakur D, Kaur M, Mishra A (2017) Isolation and screening of plant growth promoting Bacillus spp. and Pseudomonas spp. and their effect on growth, rhizospheric population and phosphorous concentration of Aloe vera. Journal of Medicinal Plants Studies 5(1): 187-192
Tsegaye Z, Yimam M, Bekele D, Chaniyalew S, Assefa F (2019) Characterization and Identification of native plant growth-promoting bacteria colonizing tef (Eragrostis Tef) rhizosphere during the flowering stage for a production of bio inoculants. Biomed J Sci & Tech Res 22(2): 16444- 16456; doi:10.26717/BJSTR.2019.22.003710
Vejan P, Abdullah R, Khadiran T, Ismail S, Nasrulhaq-Boyce A (2016) Role of plant growth promoting rhizobacteria in agricultural sustainability- A Review. Molecules 21(5): 1-17; doi:10.3390/molecules
Vijay K, Nivedita S (2017) Plant Growth Promoting Rhizobacteria as Growth Promoters for Wheat: A Review. Agri Res & Tech (4): 1-7; doi:10.19080/ARTOAJ.2017.12.555857
Yedidia I, Benhamou N, Chet I (1999) Induction of defense responses in cucumber plants (Cucumis sativus L.) by the biocontrol agent Trichoderma harzianum. Appl Environ Microbiol 65: 1061-1070
Copyright (c) 2021 Biotecnología Vegetal
Biotecnología Vegetal eISSN 2074-8647, RNPS: 2154. ISSN 1609-1841, RNPS: 0397 Editada por: Instituto de Biotecnología de las Plantas. Universidad Central Marta Abreu de Las Villas. Carretera a Camajuaní km 5.5, Santa Clara, Villa Clara, Cuba CP 54 830 Tel: 53 42200124, e-mail: info@ibp.co.cu
Biotecnología Vegetal está bajo una Licencia Creative Commons Atribución-NoComercial 4.0 Internacional.