De la teoría a la práctica en la conservación de germoplasma de especies con semillas recalcitrantes

Patricia Berjak, Norman W. Pammenter

Resumen


Las semillas recalcitrantes, que son metabólicamente activas y sensibles a la desecación, se pueden almacenar a corto plazo a temperaturas no perjudiciales en condiciones que impidan la deshidratación, pero tiene como problemas asociados la proliferación de hongos y la iniciación de la germinación. El único medio para la conservación a largo plazo del germoplasma de especies recalcitrantes es mediante la crioconservación en nitrógeno líquido (NL), lo cual no es posible con semillas intactas. Por lo tanto, los ejes embrionarios (o en ocasiones los embriones) son los explantes ideales para ser crioconservados. Como requisitos a priori, se requiere de un procedimiento de descontaminación no perjudicial, y un medio de cultivo adecuado para la germinación in vitro que deben ser desarrollados. A partir de entonces, los procedimientos de preparación para acondicionar ejes para inmersión en NL deben ser refinados, implementan y su posible impacto en la viabilidad eje determinarse en cada etapa. Estos incluyen: la evaluación de los efectos de los crioprotectores, a la que los ejes de algunas especies son intolerantes y la determinación de las respuestas de los ejes (si cryoprotected o no) de flash de secado, lo que implica la determinación de la menor cantidad de agua a ser muy retirado rápidamente para facilitar la refrigeración de temperaturas criogénicas sin formación de hielo letal. Parámetros más fundamentales para ser optimizados son la velocidad de enfriamiento a temperaturas criogénicas y la naturaleza del medio utilizado para re- calentamiento (descongelación) y la rehidratación de los explantes después de la crioconservación. Cada paso en el protocolo de crioconservación, incluyendo escisión, está acompañada por la generación de radicales libres / especies reactivas de oxígeno (ROS), los efectos de que puede ser letal - y en particular debido a que el daño consiguiente es acumulativo. Por lo tanto, para la crioconservación con éxito, es imperativo que se desarrollen medios - como se discute - para contrarrestar el daño mediado por ROS.

Palabras clave: agua catódica, crioconservación, daño mediado por ROS, ejes embrionarios, especies reactivas del oxígeno, semillas sensibles a desecación.


Texto completo:

PDF HTML

Referencias


Barnicoat, H, Cripps R, Kendon J, Sarasan V (2011) Conservation in vitro of rare and threatened ferns _ case studies of biodiversity hotspot and island species. In vitro Cellular and Developmental Biology _ Plant 47: 37-45

Benson, EE (2008a) Cryopreservation of phytodiversity: a critical appraisal of theory and practice. Critical Reviews in Plant Science 27: 141-219

Benson, EE (2008b) Cryopreservation theory. In: Reed, BM (Ed) Plant cryopreservation. pp. 15-32. Springer, New York

Benson, EE, Harding K, Johnston JW (2007) Cryopreservation of shoot tips and meristems. In: Day, JG, Stacey G (Eds) Methods in molecular biology vol 38. Cryopreservation and freeze dry protocols, 2nd edition, pp. 163-184. Humana Press, Totowa, New Jersey

Berjak, P (2005) Protector of the seeds: seminal reflections from southern Africa. Science 307: 47-49

Berjak, P, Pammenter NW (2004) Recalcitrant seeds. In: Benech-Arnold, RL, Sánchez RA (Eds) Handbook of seed physiology: applications to agriculture, pp. 305-345. Haworth Press, New York

Berjak, P, Pammenter NW (2008) From Avicennia to Zizania: seed recalcitrance in perspective. Annals of Botany 18: 213-228

Berjak, P, Farrant JM, Pammenter NW (1989) The basis of recalcitrant seed behaviour: Cell biology of the homoiohydrous seed condition. In: Taylorson, RB (Ed) Recent advances in the development and germination of seeds, pp. 89-108. Plenum Press, New York

Berjak, P, Farrant JM, Mycock DJ, Pammenter NW (1990) Recalcitrant (homoiohydrous) seeds: the enigma of their desiccation sensitivity. Seed Science and Technology 18: 297-310

Berjak, P, Walker M, Watt MP, Mycock DJ (1999) Experimental parameters underlying failure or success in plant germplasm cryopreservation: A case study on zygotic axes of Quercus robur L. CryoLetters 20: 251-262

Berjak, P, Sershen, Varghese B, Pammenter NW (2011) Cathodic amelioration of the adverse effects of oxidative stress accompanying procedures necessary for cryopreservation of recalcitrant-seeded species. Seed Science Research 21: 187-203

Calistru, C, McLean M, Pammenter NW, Berjak P (2000) The effects of mycofloral infection on the viability and ultrastructure of wet-stored seeds of Avicennia marina (Forssk.) Vierh. Seed Science Research 10: 341-353

Daws, MI, Lydall E, Chmielarz P, Leprince O, Matthews S, Thanos CA, Pritchard HW (2004) Developmental heat sum influences recalcitrant seed

traits in Aesculus hippocastanum across Europe. New Phytologist 162: 157-166

Daws, MI, Cleland H, Chmielarz P, Gorian F, Leprince O, Mullins CE, Thanos CA, Vandvik V, Pritchard HW (2006) Variable desiccation tolerance in Acer pseudoplatanus seeds in relation to developmental conditions: a case of phenotypic recalcitrance? Functional Plant Biology 33: 59-66

Dussert, S, Engelmann F (2006) New determinants for tolerance of coffee (Coffea arabica L.) seeds to liquid nitrogen exposure. CryoLetters 27: 169-178

Engelmann, F (2011a) Cryopreservation of embryos: an overview. In: Thorpe, TA, Yeung EC (Eds) Plant embryo culture: methods and protocols, pp. 155-184. Methods in molecular biology series, Humana Press, Totowa, New Jersey

Engelmann, F (2011b) Germplasm collection, storage and conservation. In: Altman, A, Hasegawa PM (Eds) Plant biotechnology and agriculture, pp. 255-268. Academic Press, Oxford

Engelmann, F, Gonzalez-Arnao M-T, Wu Y, Escobar R (2008) The development of encapsulation-dehydration. In: Reed, BM (Ed) Plant cryopreservation. A practical guide, pp 59-75. Springer Science+Business Media, LLC, New York

FFAO (2013) Draft genebank standards for plant genetic resources for food and agriculture. [Online] In: http:/ /typo3.fao.org/fileadmin/templates/agphome/documents/PGR/ITWG/ITWG6/working_docs/ CGRFA_WG_PGR_6_12_4.pdf (Accessed 7 th March, 2013)

Farrant, JM, Pammenter NW, Berjak P, Walters C (1997) Subcellular organization and metabolic activity during the development of seeds that attain different levels of desiccation tolerance. Seed Science Research 7: 135-144

Goveia, MJT (2007) The effect of developmental status on the success of cryopreservation of germplasm from non-orthodox seeds. M.Sc. thesis, University of KwaZulu-Natal (Westville Campus), Durban, South Africa. [Online] In: http:// researchspace.ukzn.ac.za/xmlui/handle/10413/ 1052 (Accessed 9 th March, 2013)

Goveia, M, Kioko JI, Berjak P (2004) Developmental status is a critical factor in the selection of excised recalcitrant axes as explants for cryopreservation. Seed Science Research 14: 241-248

Hajari, E, Berjak P, Pammenter NW, Watt MP (2011) A novel means for cryopreservation of germplasm of the recalcitrant-seeded species, Ekebergia capensis. CryoLetters 32: 308-316

Harding, K (2004) Genetic integrity of cryopreserved plant cells: a review. CryoLetters 25: 3-22

Hartmann, HT, Kesler DE, Davies FT, Geneve RL (2002) Plant propagation _ principles and practices, 7th edition. Prentice Hall, New Jersey

Ibrahim, S, Normah MN (2013) The survival of in vitro shoot tips of Garcinia mangostana L. after cyopreservation by vitrification. Plant Growth Regulation (in press) doi10.1007/S10725-013-9795-6

Kim, HH, Lee YG, Ko HC, Park SU, Gwag JG, Cho EG, Engelmann F (2009a) Development of alternative loading solutions in droplet-vitrification procedures. CryoLetters 30: 291-299

Kim, HH, Lee YG, Shin DK, Kim T, Cho EG, Engelmann F (2009b) Development of alternative plant vitrification solutions in droplet-vitrification procedures. CryoLetters 30: 320-334

Kistnasamy, P, Berjak P, Pammenter NW (2011) The effects of desiccation and exposure to cryogenic temperatures of embryonic axes of Landolphia kirkii. CryoLetters 32: 28-39

Konan, EK, Durand-Gasselin T, Kouadio YJ, Niamké AC, Dumet D, Duval Y, Rival A, Engelmann F (2007) Field development of oil palms (Elaeis guineensis Jacq.) originating from cryopreserved stabilized polyembryonic cultures (SPCS). CryoLetters 28: 377-386

Lloyd, G, McCown BM (1980) Commercially-feasible micropropagation of mountain laurel. Combined Proceedings of the International Plant Propagation Society 30: 421-427

Mazur, P (2004) Principles of cryobiology. In: Fuller, BJ, Lane N, Benson EE (Eds) Life in the frozen state, pp. 3-65, CRC Press LLC, Boza Raton, FL, USA

Motete, N, Pammenter NW, Berjak P, Frédéric JC (1997) Responses of the recalcitrant seeds of Avicennia marina to hydrated storage: events occurring at the root primordia. Seed Science Research 7: 169-178

Mroginski, LA, Sansberro PA, Scocchi AM, Luna C, Rey HYA (2008) Cryopreservation protocol for immature zygotic embryos of species of Ilex (Aquifoliaceae). Biocell 32: 33-39

Murashige, T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiologia Plantarum 15: 473-497

Mycock, DJ (1999) Addition of calcium and magnesium to a glycerol and sucrose cryoprotectant solution improves the quality of plant

embryo recovery from cryostorage. CryoLetters 20: 77-82

Nadarajan, J, Staines HJ, Benson EE, Marzalina M, Krishnapillay B, Harding K (2007) Optimization of cryopreservation for Sterculia cordata zygotic embryos using vitrification techniques. Journal of Tropical Forest Science 19: 79-85

Naidoo, C (2012) Oxidative status and stress associated with cryopreservation of germplasm of recalcitrant-seeded species. M.Sc. thesis, University of KwaZulu-Natal (Westville Campus), Durban, South Africa. [Online] In: http:// researchspace.ukzn.ac.za/xmlui/handle/10413/

Naidoo, C, Benson E, Berjak P, Goveia M, Pammenter NW (2011) Exploring the use of DMSO and ascorbic acid to promote shoot development by excised embryonic axes of recalcitrant seeds. CryoLetters 32: 166-174

Nishizawa, S, Sakai A, Amano Y, Matsuzawa T (1993) Cryopreservation of asparagus (Asparagus officianalis L.) embryonic suspension cells and subsequent plant regeneration by vitrification. Plant Science 91: 67-73

Normah, NM, Choo WK, Vun YL, Mohamed-Hussein ZA (2011) In vitro conservation of Malaysian biodiversity _ achievements, challenges and future directions. In vitro Cellular and Developmental Biology _ Plant 47: 26-36

Pammenter, NW, Berjak P (1999) A review of recalcitrant seed physiology in relation to desiccation-tolerance mechanisms. Seed Science Research 9: 13-37

Pammenter, NW, Berjak P (2013) Development of the understanding of seed recalcitrance and implications for ex situ conservation. Biotecnología Vegetal (in press)

Pammenter, NW, Berjak P, Wesley-Smith J, Vander Willigen C (2002) Experimental aspects of drying and recovery. In: Black, M, Pritchard HW (Eds) Desiccation and survival in plants. Drying without dying, pp. 93-110. CABI Publishing, Wallingford, Oxon, UK

Pammenter, NW, Greggains V, Kioko JI, Wesley-Smith J, Berjak P, Finch-Savage WE (1998) The time factor during dehydration of non-orthodox (recalcitrant) seeds: effects of different drying rates on viability retention of Ekebergia capensisis. Seed Science Research 8: 468-471

Panis, B, Lambardi M (2005) Status of cryopreservation technologies in plants (crops and forest trees). In: The role of biotechnology,pp. 43- 54. Villa Gualino, Turin, Italy. [Online] In:www.fao.org/ biotech/docs/panis.pdf (Accessed 13 th March, 2013)

Panis, B, Strosse H, Van Den Hende S, Swennen R (2002) Sucrose preculture to simplify cryopreservation of banana meristem cultures. CryoLetters 23: 375-384

Pence, VC (2011) Evaluating costs for the in vitro propagation and preservation of endangered plants. In vitro Cellular and Developmental Biology _ Plant 47: 176-187

Perán, R, Berjak P, Pammenter NW, Kioko JI (2006) Cryopreservation, encapsulation and promotion of shoot production of embryonic axes of Ekebergia capensis Sparrrm. CryoLetters 27: 1-12

Ravi, D, Anand P (2012) Production and application of artificial seeds: a review. International Research Journal of Biological Sciences 1: 74-78

Sacandé, M, Jøker D, Dulloo ME, Thomsen KA (Eds) (2004) Comparative storage biology of tropical tree seeds. IPGRI, Rome

Sakai, A, Engelmann F (2007) Vitrification, encapsulation-vitrification and droplet-vitrification: a review. CryoLetters 28: 151-172

Sakai, A, Kobayashi S, Oyama I (1990) Cryopreservation of nucellar cells of navel orange (Citrus sinensis Osb. var. brasiliensis Tanaka) by vitrification. Plant Cell Reports 9: 30-33

San-José, MC, Jorquera L, Vidal N, Corredoira E, Sánchez C (2005) Cryopreservation of European chestnut germplasm. Acta Horticulturae 693: 225-232

Sershen, Berjak P, Pammenter NW (2008) Desiccation sensitivity of excised embryonic axes of selected amaryllid species. Seed Science Research 18: 1-11

Sershen, Pammenter NW, Berjak P, Wesley-Smith J (2007) Cryopreservation of embryonic axes of selected amaryllid species. CryoLetters 28: 387-399

Sershen, Berjak P, Pammenter NW, Wesley-Smith J (2012a) The effects of various parameters during processing for cryopreservation on the ultrastructure and viability of embryos of Amaryllis belladonna. Protoplasma 249: 155-169

Sershen, Berjak P, Pammenter NW, Wesley-Smith J (2012b) Rate of dehydration, state of sub-cellular organisation and nature of cryoprotection are critical factors contributing to the variable success of cryopreservation: Studies on recalcitrant embryos of Haemanthus montanus. Protoplasma 249: 171-186

Sisunandar, Sopade PA, Samosir YMS, Rival A, Adkins S (2010) Dehydration improves cryopreservation of coconut (Cocos nucifera L.). Cryobiology 61: 289-296

Steinmacher, DA, Saldanha CW, Clement CR, Guerra MP (2007) Cryopreservation of peach palm zygotic embryos. CryoLetters 28: 13-22

Sutherland, JR, Diekmann M, Berjak P (Eds) Forest tree seed health. IPGRI Technical Bulletin no. 6, International Plant Genetic Resources Institute, Rome

Tammasiri K (1999) Cryopreservation of embryonic axes of jackfruit. CryoLetters 20: 21-28

Tao, D, Li PH (1986) Classification of plant cryoprotectants. Journal of Theoretical Biology 123: 305-310

Touchell, D, Walters C (2000) Recovery of embryos of Zizania palustris following exposure to liquid nitrogen. CryoLetters 21: 261-270

Tweddle, JC, Dickie JB, Baskin CC, Baskin JM (2003) Ecological aspects of seed desiccation sensitivity. Journal of Ecology 91: 294-304

Varghese, D, Berjak P, Pammenter NW (2009) Cryopreservation of shoot tips of Trichilia emetica, a tropical recalcitrant-seeded species. CryoLetters 30: 280-290

Walters, C, Pammenter NW, Berjak P, Crane J (2001) Desiccation damage, accelerated ageing and respiration in desiccation tolerant and sensitive seeds. Seed Science Research 11: 135-148

Walters, C, Berjak P, Pammenter NW, Kennedy K, Raven P (2013) Preservation of recalcitrant seeds. Science 339: 915-916

Walters, C, Wesley-Smith J, Crane J, Hill LM, Chmielarz P, Pammenter NW, Berjak P (2008) Cryopreservation of recalcitrant (i.e.desiccation-sensitive) seeds. In: Reed, BM (Ed) Plant cryopreservation. A practical guide, pp. 465-484. Springer Science+Business Media, LLC, New York

Wesley-Smith, J (2002) Investigation into the responses of axes of recalcitrant seeds to dehydration and cryopreservation. Ph.D. thesis, University of Natal (now KwaZulu-Natal, Westville Campus), Durban, South Africa. [Online] In: http://researchspace.ukzn.ac.za/ xmlui/handle/10413/4998 (Accessed 22 nd March, 2013)

Wesley-Smith, J, Walters C, Pammenter NW, Berjak P (2001) Interactions of water content, rapid (non-equilibrium) cooling to -196°C and survival of embryonic axes of Aesculus hippocastanum L. seeds. Cryobiology 42: 196-206

Wesley-Smith, J, Walters C, Berjak P, Pammenter NW (2004) The influence of water content, cooling and warming rate upon survival of embryonic axes of Poncirus trifoliata (L.). CryoLetters 25: 129-138

Whitaker, C, Beckett RP, Minibayeva FV, Kranner I (2010) Production of reactive oxygen species in excised and cryopreserved explants of Trichilia dregeana Sond. South African Journal of Botany 76: 112-118

Woodenberg, WR (2009) Some aspects of megagametophyte development and post-shedding seed behaviour of Encephalartos natalensis (Zamiaceae). M.Sc. thesis, University of KwaZulu- Natal (Westville Campus), Durban, South Africa. [Online] In: http://researchspace.ukzn.ac.za/xmlui/ handle/10413/6525 (Accessed 6 th April, 2013)




Copyright (c) 2016 Biotecnología Vegetal

Biotecnología Vegetal eISSN 2074-8647, RNPS: 2154. ISSN 1609-1841, RNPS: 0397 Editada por: Instituto de Biotecnología de las Plantas. Universidad Central Marta Abreu de Las Villas. Carretera a Camajuaní km 5.5, Santa Clara, Villa Clara, Cuba CP 54 830 Tel: 53 42200124, e-mail: info@ibp.co.cu

Licencia Creative Commons
Biotecnología Vegetal
está bajo una Licencia Creative Commons Atribución-NoComercial 4.0 Internacional.