Efecto de la densidad de inóculo y la renovación de la atmósfera gaseosa en el cultivo de brotes de Digitalis purpurea L. en Sistemas de Inmersión Temporal
Resumen
Digitalis purpurea L. es una de las dos únicas especies de interés económico del género Digitalis. Su importancia radica en que constituye una de las principales fuentes de cardenólidos, fármacos irreemplazables en el tratamiento de la insuficiencia cardíaca. El presente trabajo se realizó con el objetivo de determinar el efecto de la densidad de inóculo y la renovación de la atmósfera gaseosa en sistemas de inmersión temporal (SIT) en Digitalis purpurea L. Para su cumplimiento, se estudiaron diferentes densidades de inóculo (6, 12, 18 explantes por SIT) en la producción de biomasa así como el uso de la ventilación forzada. La mayor producción de biomasa por SIT (104.03 gMF y 5.74 gMS) se obtuvo cuando se inocularon 12 explantes. Sin embargo, la menor densidad de inóculo produjo un efecto negativo en el desarrollo de los explantes y no hubo incremento de biomasa. La renovación de la atmósfera mediante la ventilación forzada indujo un mayor estrés oxidativo asociado a un aumento de la síntesis de digitoxina. Tanto la densidad de inóculo como la ventilación forzada son factores de gran importancia en el cultivo en sistemas de inmersión temporal ya sea para la producción de biomasa como para la obtención de metabolitos secundarios en plantas de interés.
Referencias
Bandyopadhyay T, Gangopadhyay G, Poddar R, Mukherjee K (2004) Trichomes their diversity, distribution and density in acclimatization of Teak
(Tectona grandis L.) plants grown in vitro. Plant Cell Tiss Organ Cult 78:113-121
Berthouly M, Etienne H (2005) Temporary immersion system: a new concept for use liquid medium in mass propagation. En: Hvoslef-Eide AK, Preil W (Eds) Liquid culture systems for in vitro plant propagation, pp. 165-195. Springer. Dordrecht
Cassells AC, Curry RF (2001) Oxidative stress and physiological, epigenetic and genetic variability in plant tissue culture: implications for micropropagators and genetic engineers. Plant Cell Tiss Organ Cult
:145-157
Chong TM, Abdullah MA, Fadzillah NM, Lai OM, Lajis NH (2004) Anthraquinones production, hydrogen peroxide level and antioxidant vitamins in Morinda elliptica cell suspension cultures from intermediary
and production medium strategies. Plant Cell Rep 22:951-958
Elbaz HA, Stueckle TA, Wang HL, O’Doherty GA, Lowry DT, Sargent LM, Wang L, Dinu CZ, Rojanasakul Y (2012) Digitoxin and a synthetic monosaccharide analog inhibit cell viability in lung cancer cells. Toxicol Appl Pharmacol 258:51–60
Fal MA, Majada JP, Sánchez Tamés R (2002) Physical environment in non-ventilated culture vessels affects in vitro growth and morphogenesis of several cultivars of Dianthus caryophyllus L. In Vitro Cell Dev
Biol-Plant 38:589-594
Gárate A, Bonilla I (2008) Nutrición mineral y producción vegetal. En: Azcón-Bieto J, Talón M Fundamentos de fisiología vegetal, pp. 143-164. Mc Graw Hill Interamericana. Madrid
Hahn EJ, Paek KY (2005) Multiplication of Chrysanthemum shoots in bioreactors as affected by culture method and inoculation density of single node stems. En: Hvoslef-Eide AK, Preil W (Eds) Liquid culture systems for in vitro plant propagation, pp. 143-153. Springer. Dordrecht
Ivanova M, Van Staden J (2011) Inûuence of gelling agent and cytokinins on the control of hyperhydricity in Aloe polyphylla. Plant Cell Tiss Organ Cult 104:13- 21
Jiménez E (2005) Mass propagation of tropical crops in temporary immersion systems. En: Hvoslef-Eide AK, Preil W (Eds) Liquid culture
systems for in vitro plant propagation, pp. 197-211. Springer. Dordrecht.
Jiménez E, Pérez-Alonso N, de Feria M, Barbón R, Capote A, Chávez M, Quiala E, Pérez JC (1999) Improved production of potato microtubers using a temporary immersion system. Plant Cell Tiss Organ Cult 59:19-23
Kevers C, Franck T, Strasser RJ, Dommes J, Gaspar T (2004) Hyperhydricity of micropropagated shoots: a typically stress-induced change of physiological state. Plant Cell Tiss Organ Cult 77:181-191
Kreis W, Müller-Uri F (2013) Cardenolide aglycone formation in Digitalis. En: Bach TJ y Rohmer M (Eds) Isoprenoid synthesis in plants and
microorganisms: new concepts and experimental approaches, pp. 425-438. Springer Science+Business Media. New York.
Mills D, Yanqing Z, Benzioni A (2004) Improvement of jojoba shoot multiplication in vitro by ventilation. In Vitro Cell Dev Biol Plant 40:396-402
Mohamed MAH, Ibrahim T (2012) Enhanced in vitro production of Ruta graveolens L. coumarins and rutin by mannitol and ventilation. Plant Cell Tiss Organ Cult 111:335-343
Murashige, T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco cultures. Physiol. Plant. 15: 473–497
Niknam V, Meratan AA, Ghaffari SM (2011) The effect of salt stress on lipid peroxidation and antioxidative enzymes in callus of two
Acanthophyllum species. In Vitro Cell Dev Biol- Plant 47:297-308
Park SW, Jeon JH, Kim SH, Park YM, Aswath C, Joung H (2004) Effect of sealed and vented gaseous microenvironment on hyperhydricity of
potato shoots in vitro. Sci Hort 99:199-205
Pérez-Alonso N, Capote A, Gerth A, Jiménez E (2012) Increased cardenolides production by elicitation of Digitalis lanata shoots cultured in temporary immersion systems. Plant Cell Tissue
Organ Cult 110:153–162
Pérez-Alonso, N, Wilken D, Gerth A, Jahn A, Nitzsche HM, Kerns G, Capote-Pérez A, Jiménez EA (2009) Cardiotonic glycosides from biomass of Digitalis purpurea L. cultured in temporary immersion systems. Plant Cell Tiss Organ Cult 99: 151–156
Pérez-Alonso N, Arana Labrada F, Capote A, Pérez A, Sosa R, Mollineda A, Jiménez E (2014) Estim ulación de la producción de
cardenólidos en brotes de Digitalis purpurea L. cultivados in vitro mediante la adición de elicitores. Revista colombiana de Biotecnología XVI (1): 51-61
Piqueras A, Debergh P (1999) Morphogenesis in micropropagation. En: Soh WY, Bhojwani SS (Eds.). Morphogenesis in plant tissue cultures, pp. 443-462 Kluwer Academic Publishers. Dordrecht.
Preil W (2005) General introduction: a personal reflection on the use of liquid media for in vitro culture. En: Hvoslef-Eide AK, Preil W (Eds) Liquid culture systems for in vitro plant propagation, pp. 1-8.
Springer. Dordrecht.
Quiala E, Cañal MJ, Meijón M, Rodríguez R, Chávez M, Valledor L, de Feria M, Barbón R (2012) Morphological and physiological responses of proliferating shoots of teak to temporary immersion and BA treatments. Plant Cell Tiss Organ Cult 109:223-234
Roca-Pérez L, Boluda R, Gavidia I, Pérez-Bermúdez P (2004) Seasonal cardenolide production and Dop5br gene expression in natural populations of Digitalis obscura. Phytochemistry 65:1869-1878
Roels S, Noceda C, Escalona M, Sandoval J, Canal MJ, Rodriguez R, Debergh P (2006) The effect of headspace renewal in a temporary immersion bioreactor on plantain (Musa AAB) shoot proliferation and quality. Plant Cell Tiss Organ Cult 84: 155–163
Sales E, Frieder M, Nebauer SG, Segura J, Kreis W, Arrillaga I (2011) Digitalis. En: C Kole (Ed.) Wild Crop Relatives: Genomic and Breeding Resources, Plantation and Ornamental Crops, pp. 73-111. Springer-Verlag Berlin Heidelber. Berlin
Sallanon H, Maziere Y (1992) Inûuence of growth room and vessel humidity on the in vitro development of rose plants. Plant Cell Tiss Organ Cult 30:121-125
Savio LEB, Astarita LV, Santarém ER (2012) Secondary metabolism in micropropagated Hypericum perforatum L. grown in non-aerated liquid
medium. Plant Cell, Tissue and Organ Culture 108(3): 465-472
Schumann A, Berkov S, Claus D, Gerth A, Bastida J, Codina C (2012) Production of galanthamine by Leucojum aestivum shoots grown in different bioreactor systems. Appl Biochem Biotechnol 167: 1907–1920
Sergiev I, Alexieva V, Karanov E (1997) Effect of spermine, atrazine and combination between them on some endogenous protective systems and stress markers in plants. CR Acad Bulg Sci 51:121-124
Sivakumar G, Kim SJ, Hahn EJ, Paek KY (2005) Optimizing environmental factors for large-scale multiplication of Chrysanthemum (Chrysanthemum grandiflorum) in balloon-type bioreactor culture. In
Vitro Cell Dev Biol-Plant 41:822-825
Sivanesan I, Song JY, Hwang SJ, Jeong BR (2011) Micropropagation of Cotoneaster wilsonii Nakai-a rare endemic ornamental plant. Plant Cell Tiss Organ Cult 105:55-63
Wang J, Gao WY, Zhang J, Zuo BM, Zhang LM, Huang LQ (2012) Production of ginsenoside and polysaccharide by two-stage cultivation of Panax quinquefolium L. cells. In Vitro Cell Dev Biol-Plant 48:107-112
Wichtl M, Mangkudidjojo M, Wichtl-Bleier W (1982) Hochleistungs-ûüssigkeits-chromatographische analyse von digitalis-blattext-rakten. J Chromatogr 234:503-508
Wu Z, Chen LJ, Long YJ (2009) Analysis of ultrastructure and reactive oxygen species of hyperhydric garlic (Allium sativum L.) shoots. In Vitro Cell Dev Biol Plant 45:483-490
Yücesan B (2011) In vitro propagation and cardiac glycoside production in endemic Digitalis L. species de Anatolia. Thesis submitted to the graduate school of natural and applied sciences of the Abant Izzet
Baysal University, Turkey.
Ziv M (2000) Bioreactor technology for plant micropropagation. Hortic Rev 24:1-30
Copyright (c) 2016 Biotecnología Vegetal
Biotecnología Vegetal eISSN 2074-8647, RNPS: 2154. ISSN 1609-1841, RNPS: 0397 Editada por: Instituto de Biotecnología de las Plantas. Universidad Central Marta Abreu de Las Villas. Carretera a Camajuaní km 5.5, Santa Clara, Villa Clara, Cuba CP 54 830 Tel: 53 42200124, e-mail: info@ibp.co.cu
Biotecnología Vegetal está bajo una Licencia Creative Commons Atribución-NoComercial 4.0 Internacional.