Explosión oxidativa en la interacción planta-patógeno

Milady Mendoza

Resumen


La producción de especies reactivas de oxígeno (ROS) por la vía de consumo de oxígeno en lo que se denomina ‘explosión oxidativa’, es un sello del reconocimiento exitoso de la infección y activación de la defensa de la planta. ROS no son solo productos tóxicos del metabolismo aeróbico, sino además, moléculas señales involucradas en varios procesos de desarrollo en todos los organismos. Estudios previos han demostrado que una explosión oxidativa frecuentemente tiene lugar en el sitio de la invasión, durante las primeras etapas de la mayoría de las interacciones planta-patógeno. Por esta razón, con vista a poder enfrentar el efecto dañino de estas moléculas, las plantas han ajustado un gran panel de mecanismos antioxidantes enzimáticos y no-enzimáticos. Aquí, se presentan algunos de los principales aspectos relacionados con el papel de ROS durante la interacción planta-patógeno.

Palabras clave: defensa de la planta, estrés biótico, mecanismos antioxidantes


Texto completo:

PDF HTML

Referencias


Able A J, Guest D I, Sutherland M W (2000) Hydrogen peroxide yields during the incompatible interaction of tobacco suspension cells inoculated with Phytophthora nicotianae. Plant Physiology 124: 899-910

Angelini R, Tisi A, Rea G, Chen M M, Botta M, Federico R, Cona A (2008) Involvement of polyamine oxidase in wound healing. Plant Physiology 146 (1): 162-177

Apel K and Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology 55: 373-399

Ashtamker C, Kiss V, Sagi M, Davydov O, Fluhr R (2007) Diverse subcellular locations of cryptogein-induced reactive oxygen species production in Tobacco Bright Yellow-2 Cells. Plant Physiology 143 (4): 1817-1826

Asselbergh B, Curvers K, Frana S C, Audenaert K, Vuylsteke M, Van Breusegem F, Höfte M M (2007) Resistance to Botrytis cinerea in sitiens, an abscisic acid-deficient tomato mutant, involves timely production of hydrogen peroxide and cell wall modifications in the epidermis. Plant Physiology 144: 1863-1877

Bechtold U, Karpinski S, Mullineaux P M (2005) The inuence of the light environment and photosynthesis on oxidative signalling responses in plant–biotrophic pathogen interactions. Plant, Cell and Environment 28: 1046-1055

Bindschedler L V, Dewdney J, Blee K A, Stone J M, Asai T, Plotnikov J, Denoux C, Hayes T, Gerrish C, Davies D R, Ausubel F M, Bolwell G P (2006) Peroxidase-dependent apoplastic oxidative burst in arabidopsis required for pathogen resistance. The Plant Journal: 1-13

Breusegem F V, Dat J F (2006) Reactive oxygen species in plant cell death. Plant Physiology 141: 384-390

Choi H W, Kim Y J, Lee S C, Hong J K, Hwang B K (2007) Hydrogen peroxide generation by the pepper extracellular peroxidase CaPO2 activates local and systemic cell death and defense response to bacterial pathogens. Plant Physiology 145: 890-904

Davies D R, Bindschedler L V, Strickland T S, Bolwell G P (2006) Production of reactive oxygen species in Arabidopsis thaliana cell suspension cultures in response to an elicitor from Fusarium oxysporum: implications for basal resistance. Journal of Experimental Botany 57 (8): 1817-1827 del Río L A, Corpas F J, Sandalio L M, Palma J M, Gómez M, Barroso J B (2002) Reactive oxygen species, antioxidant systems and nitric oxide in peroxisomes. Journal of Experimental Botany 53 (372): 1255-1272

Doke N (1983) Involvement of superoxide anion generation in the hypersensitive response of potato tuber tissues to infection with an incompatible race of Phytophthora infestans and to the hyphal wall components Physiologial Plant Pathology 23 (3): 345-357

Egan M J, Wang Z-Y, Jones M A, Smirnoff N, Talbot N J (2007) Generation of reactive oxygen species by fungal NADPH oxidases is required for rice blast disease. PNAS 104 (28): 11772-11777

Foyer C H, Noctor G (2005) Oxidant and antioxidant signalling in plants: a re-evaluation of the concept of oxidative stress in a physiological context. Plant, Cell and Environment 28: 1056– 1071

Fujita M, Fujita Y, Noutoshi Y, Takahashi F, Narusaka Y, Yamaguchi-Shinozaki K, Shinozaki K (2006) Crosstalk between abiotic and biotic stress responses: a current view from the points of convergence in the stress signaling networks. Current Opinion in Plant Biology 9 (4): 426-442

Gadjev I, Vanderauwera S, Gechev T S, Laloi C, Minkov I N, Shulaev V, Apel K, Inzé D, Mittler R, Van Breusegem F (2006) Transcriptomic footprints disclose specificity of reactive oxygen species signaling in arabidopsis. Plant Physiology 141: 436-445

Gara L D, Pinto M C d, Tommasi F (2003) The antioxidant systems vis-à-vis reactive oxygen species during plant–pathogen interaction. Plant Physiology and Biochemistry 41: 863-870

García-Limones C, Hervás A, Navas-Cortés J A, Jiménez-Díaz R M and Tena M (2002) Induction of an antioxidant enzyme system and other oxidative stress markers associated with compatible and incompatible interactions between chikpea. Physiological and Molecular Plant Pathology 61: 325-337

García-Limones C, Dorado G, Navas-Cortés J A, Jiménez-Díaz R M and Tena M (2009) Changes in the redox status of chickpea roots in response to infection by Fusarium oxysporum f. sp. ciceris: apoplastic antioxidant enzyme activities and expression of oxidative stress-related genes. Plant Biology 11: 194-203

Gechev T S, Van Breusegem F, Stone J M, Denev I and Laloi C (2006) Reactive oxygen species as signals that modulate plant stress responses and programmed cell death. BioEssays 28: 1091-1101 Hancock J T, Desikan R and Neill S J (2001) Role of reactive oxygen species in cell signalling and development. Nature Reviews Molecular Cell Biology 5: 305-315

Lamb C J, Dixon R A (1997) The oxidative burst in plant disease resistance. Annual Review of Plant Physiology and Plant Molecular Biology 48: 251-275

Liu G, Greenshields D L, Sammynaiken R, Hirji R N, Selvaraj G, Wei Y (2007) Targeted alterations in iron homeostasis underlie plant defense responses. Journal of Cell Science 120: 596-605

Mittapalli O, Neal J J, Shukle R H (2007) Tissue and life stage specificity of glutathione s-transferase expression in the Hessian Fly, Mayetiola destructor: Implications for resistance to host allelochemicals. J Insect Sci 7: 20

Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. TRENDS in Plant Science 9 (10): 490-498

Mittler R, Herr E H, Orvar B L, Camp W v, Willekens H, Inzé D, Ellis B E (1999) Transgenic tobacco plants with reduced capability to detoxify reactive oxygen intermediates are hyperresponsive to pathogen infection PNAS 96 (24): 14165-14170

Molina L, Kahmann R (2007) An Ustilago maydis gene involved in H2O2 detoxification is required for virulence. Plant Cell 19 (7): 2293-2309

Mou Z, Fan W and Dong X (2003) Inducers of plant systemic acquired resistance regulate NPR1 function through redox changes. Cell 113: 935-944

Mur L A J, Kenton P, Lloyd A J, Ougham H, Prats E (2007) The hypersensitive response, the centenary is upon us but how much do we know? Journal of Experimental Botany: 1-20

Narusaka Y, Narusaka M, Park P, Kubo Y, Hirayama T, Seki M, Shiraishi T, Ishida J, Nakashima M, Enju A, Sakurai T, Satou M, Kobayashi M,d Shinozaki K (2004) RCH1, a locus in arabidopsis that confers resistance to the hemibiotrophic fungal pathogen Colletotrichum higginsianum. MPMI 17 (7): 749-762

Pignocchi C, Kiddle G, Hernández I, Foster S J, Asensi A, Taybi T, Barnes J, Foyer C H (2006) Ascorbate oxidase-dependent changes in the redox state of the apoplast modulate gene transcript accumulation leading to modified hormone signaling and orchestration of defense processes in tobacco. Plant Physiology 141: 423-435

Polidoros A N, V M P, Scandalios J P (2001) Transgenic tobacco plants expressing the maize Cat2 gene have altered catalase levels that affect plant-pathogen interactions and resistance to oxidative stress. Transgenic Res 10: 555–569

Romero D, Rivera M E, Cazorla F M, Codina J C, Fernández-Ortuño D, Torés J A, Pérez-García A, de Vicente A (2008) Comparative histochemical analyses of oxidative burst and cell wall reinforcement in compatible and incompatible melon–powdery mildew (Podosphaera fusca) interaction. Journal of Plant Physiology: 1-11

Ryter S W, Kim H P, Hoetzel A, Park J W, Nakahira K, Wang X, Choi A M K (2007) Mechanisms of cell death in oxidative stress. Antioxidants & Redox Signaling 9 (1): 49-89.

Shao H-B, Chu L-Y, Lu Z-H, Kang C-M (2008) Primary antioxidant free radical scavenging and redox signaling pathways in higher plant cells. Int J Biol Sci 4 (1): 8-14

Shetty N P, Lyngs Jørgensen H J, Due Jensen J, Collinge D B, Shekar Shetty H (2008) Roles of reactive oxygen species in interactions between plants and pathogens. European Journal of Plant Pathology 121: 267-280

Shetty N P, Kristensen B K, Newman M-A, Mollera K, Gregersen P L, Jorgensen H J L (2003) Association of hydrogen peroxide with restriction of Septoria tritici in resistant wheat. Physiological and Molecular Plant Pathology 62 (6): 333-346

Shetty N P, Mehrabi R, Lütken H, Haldrup A, Kema G H J, Collinge D B, Jorgensen H J L (2007) Role of hydrogen peroxide during the interaction between the hemibiotrophic fungal pathogen Septoria tritici and wheat. New Phytologist 174: 637-647

Œlesak I, Libik M, Karpinska B, Karpinski S, Miszalski Z (2007) The role of hydrogen peroxide in regulation of plant metabolism and cellular signalling in response to environmental stresses. Acta Biochimica Polonica 54 (1): 39-50

Torres M A (2010) ROS in biotic interactions. Physiologia Plantarum 138: 414-429

Torres M A, Jones J D G, Dangl J L (2006) Reactive oxygen species signaling in response to pathogens. Plant Physiology 141: 373-378

Van Breusegem F, Bailey-Serres J, Mittler R (2008) Unraveling the tapestry of networks involving reactive oxygen species in plants. Plant Physiology 147: 978-984

Vidal G, Ribas-Carbo M, Garmier M, Dubertret G, Rasmusson A G, Mathieu C, Foyer C H, Paepe R D (2007) Lack of respiratory chain complex I impairs alternative oxidase engagement and modulates redox signaling during elicitor-induced cell death in T. The Plant Cell Online 19 (2): 640-655

Wientjes F B, Segal A W (1995) NADPH oxidase and the respiratory burst. Seminars in Cell Biology 6 (6): 357-365

Wojtaszek P (1997) Oxidative burst : an early plant response to pathogen infection. Biochem. J. 322: 681-692

Yoda H, Yamaguchi Y, Sano H (2003) Induction of hypersensitive cell death by hydrogen peroxide produced through polyamine degradation in tobacco plants. Plant Physiology 132 (4): 1973-1981

Yoda H, Hiroi Y, Sano H (2006) Polyamine oxidase is one of the key elements for oxidative burst to induce programmed cell death in tobacco cultured cells. Plant Physiology 142 (1): 193-206

Zago E D, Morsa S, Dat J F, Alard P, Ferrarini A, Inzé D, Delledonne M, Van Breusegem F (2006) Nitric oxide- and hydrogen peroxide-responsive gene regulation during cell death induction in tobacco. Plant Physiology 141 (2): 404-411

Zaninotto F, La Camera S, Polverari A, Delledonne M (2006) Cross talk between reactive nitrogen and oxygen species during the hypersensitive disease resistance response. Plant Physiology 141: 379-383




Copyright (c) 2016 Biotecnología Vegetal

Biotecnología Vegetal eISSN 2074-8647, RNPS: 2154. ISSN 1609-1841, RNPS: 0397 Editada por: Instituto de Biotecnología de las Plantas. Universidad Central Marta Abreu de Las Villas. Carretera a Camajuaní km 5.5, Santa Clara, Villa Clara, Cuba CP 54 830 Tel: 53 42200124, e-mail: info@ibp.co.cu

Licencia Creative Commons
Biotecnología Vegetal
está bajo una Licencia Creative Commons Atribución-NoComercial 4.0 Internacional.