Explosión oxidativa en la interacción planta-patógeno
Resumen
La producción de especies reactivas de oxígeno (ROS) por la vía de consumo de oxígeno en lo que se denomina ‘explosión oxidativa’, es un sello del reconocimiento exitoso de la infección y activación de la defensa de la planta. ROS no son solo productos tóxicos del metabolismo aeróbico, sino además, moléculas señales involucradas en varios procesos de desarrollo en todos los organismos. Estudios previos han demostrado que una explosión oxidativa frecuentemente tiene lugar en el sitio de la invasión, durante las primeras etapas de la mayoría de las interacciones planta-patógeno. Por esta razón, con vista a poder enfrentar el efecto dañino de estas moléculas, las plantas han ajustado un gran panel de mecanismos antioxidantes enzimáticos y no-enzimáticos. Aquí, se presentan algunos de los principales aspectos relacionados con el papel de ROS durante la interacción planta-patógeno.
Palabras clave: defensa de la planta, estrés biótico, mecanismos antioxidantes
Referencias
Able A J, Guest D I, Sutherland M W (2000) Hydrogen peroxide yields during the incompatible interaction of tobacco suspension cells inoculated with Phytophthora nicotianae. Plant Physiology 124: 899-910
Angelini R, Tisi A, Rea G, Chen M M, Botta M, Federico R, Cona A (2008) Involvement of polyamine oxidase in wound healing. Plant Physiology 146 (1): 162-177
Apel K and Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology 55: 373-399
Ashtamker C, Kiss V, Sagi M, Davydov O, Fluhr R (2007) Diverse subcellular locations of cryptogein-induced reactive oxygen species production in Tobacco Bright Yellow-2 Cells. Plant Physiology 143 (4): 1817-1826
Asselbergh B, Curvers K, Frana S C, Audenaert K, Vuylsteke M, Van Breusegem F, Höfte M M (2007) Resistance to Botrytis cinerea in sitiens, an abscisic acid-deficient tomato mutant, involves timely production of hydrogen peroxide and cell wall modifications in the epidermis. Plant Physiology 144: 1863-1877
Bechtold U, Karpinski S, Mullineaux P M (2005) The inuence of the light environment and photosynthesis on oxidative signalling responses in plant–biotrophic pathogen interactions. Plant, Cell and Environment 28: 1046-1055
Bindschedler L V, Dewdney J, Blee K A, Stone J M, Asai T, Plotnikov J, Denoux C, Hayes T, Gerrish C, Davies D R, Ausubel F M, Bolwell G P (2006) Peroxidase-dependent apoplastic oxidative burst in arabidopsis required for pathogen resistance. The Plant Journal: 1-13
Breusegem F V, Dat J F (2006) Reactive oxygen species in plant cell death. Plant Physiology 141: 384-390
Choi H W, Kim Y J, Lee S C, Hong J K, Hwang B K (2007) Hydrogen peroxide generation by the pepper extracellular peroxidase CaPO2 activates local and systemic cell death and defense response to bacterial pathogens. Plant Physiology 145: 890-904
Davies D R, Bindschedler L V, Strickland T S, Bolwell G P (2006) Production of reactive oxygen species in Arabidopsis thaliana cell suspension cultures in response to an elicitor from Fusarium oxysporum: implications for basal resistance. Journal of Experimental Botany 57 (8): 1817-1827 del Río L A, Corpas F J, Sandalio L M, Palma J M, Gómez M, Barroso J B (2002) Reactive oxygen species, antioxidant systems and nitric oxide in peroxisomes. Journal of Experimental Botany 53 (372): 1255-1272
Doke N (1983) Involvement of superoxide anion generation in the hypersensitive response of potato tuber tissues to infection with an incompatible race of Phytophthora infestans and to the hyphal wall components Physiologial Plant Pathology 23 (3): 345-357
Egan M J, Wang Z-Y, Jones M A, Smirnoff N, Talbot N J (2007) Generation of reactive oxygen species by fungal NADPH oxidases is required for rice blast disease. PNAS 104 (28): 11772-11777
Foyer C H, Noctor G (2005) Oxidant and antioxidant signalling in plants: a re-evaluation of the concept of oxidative stress in a physiological context. Plant, Cell and Environment 28: 1056– 1071
Fujita M, Fujita Y, Noutoshi Y, Takahashi F, Narusaka Y, Yamaguchi-Shinozaki K, Shinozaki K (2006) Crosstalk between abiotic and biotic stress responses: a current view from the points of convergence in the stress signaling networks. Current Opinion in Plant Biology 9 (4): 426-442
Gadjev I, Vanderauwera S, Gechev T S, Laloi C, Minkov I N, Shulaev V, Apel K, Inzé D, Mittler R, Van Breusegem F (2006) Transcriptomic footprints disclose specificity of reactive oxygen species signaling in arabidopsis. Plant Physiology 141: 436-445
Gara L D, Pinto M C d, Tommasi F (2003) The antioxidant systems vis-à-vis reactive oxygen species during plant–pathogen interaction. Plant Physiology and Biochemistry 41: 863-870
García-Limones C, Hervás A, Navas-Cortés J A, Jiménez-Díaz R M and Tena M (2002) Induction of an antioxidant enzyme system and other oxidative stress markers associated with compatible and incompatible interactions between chikpea. Physiological and Molecular Plant Pathology 61: 325-337
García-Limones C, Dorado G, Navas-Cortés J A, Jiménez-Díaz R M and Tena M (2009) Changes in the redox status of chickpea roots in response to infection by Fusarium oxysporum f. sp. ciceris: apoplastic antioxidant enzyme activities and expression of oxidative stress-related genes. Plant Biology 11: 194-203
Gechev T S, Van Breusegem F, Stone J M, Denev I and Laloi C (2006) Reactive oxygen species as signals that modulate plant stress responses and programmed cell death. BioEssays 28: 1091-1101 Hancock J T, Desikan R and Neill S J (2001) Role of reactive oxygen species in cell signalling and development. Nature Reviews Molecular Cell Biology 5: 305-315
Lamb C J, Dixon R A (1997) The oxidative burst in plant disease resistance. Annual Review of Plant Physiology and Plant Molecular Biology 48: 251-275
Liu G, Greenshields D L, Sammynaiken R, Hirji R N, Selvaraj G, Wei Y (2007) Targeted alterations in iron homeostasis underlie plant defense responses. Journal of Cell Science 120: 596-605
Mittapalli O, Neal J J, Shukle R H (2007) Tissue and life stage specificity of glutathione s-transferase expression in the Hessian Fly, Mayetiola destructor: Implications for resistance to host allelochemicals. J Insect Sci 7: 20
Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. TRENDS in Plant Science 9 (10): 490-498
Mittler R, Herr E H, Orvar B L, Camp W v, Willekens H, Inzé D, Ellis B E (1999) Transgenic tobacco plants with reduced capability to detoxify reactive oxygen intermediates are hyperresponsive to pathogen infection PNAS 96 (24): 14165-14170
Molina L, Kahmann R (2007) An Ustilago maydis gene involved in H2O2 detoxification is required for virulence. Plant Cell 19 (7): 2293-2309
Mou Z, Fan W and Dong X (2003) Inducers of plant systemic acquired resistance regulate NPR1 function through redox changes. Cell 113: 935-944
Mur L A J, Kenton P, Lloyd A J, Ougham H, Prats E (2007) The hypersensitive response, the centenary is upon us but how much do we know? Journal of Experimental Botany: 1-20
Narusaka Y, Narusaka M, Park P, Kubo Y, Hirayama T, Seki M, Shiraishi T, Ishida J, Nakashima M, Enju A, Sakurai T, Satou M, Kobayashi M,d Shinozaki K (2004) RCH1, a locus in arabidopsis that confers resistance to the hemibiotrophic fungal pathogen Colletotrichum higginsianum. MPMI 17 (7): 749-762
Pignocchi C, Kiddle G, Hernández I, Foster S J, Asensi A, Taybi T, Barnes J, Foyer C H (2006) Ascorbate oxidase-dependent changes in the redox state of the apoplast modulate gene transcript accumulation leading to modified hormone signaling and orchestration of defense processes in tobacco. Plant Physiology 141: 423-435
Polidoros A N, V M P, Scandalios J P (2001) Transgenic tobacco plants expressing the maize Cat2 gene have altered catalase levels that affect plant-pathogen interactions and resistance to oxidative stress. Transgenic Res 10: 555–569
Romero D, Rivera M E, Cazorla F M, Codina J C, Fernández-Ortuño D, Torés J A, Pérez-García A, de Vicente A (2008) Comparative histochemical analyses of oxidative burst and cell wall reinforcement in compatible and incompatible melon–powdery mildew (Podosphaera fusca) interaction. Journal of Plant Physiology: 1-11
Ryter S W, Kim H P, Hoetzel A, Park J W, Nakahira K, Wang X, Choi A M K (2007) Mechanisms of cell death in oxidative stress. Antioxidants & Redox Signaling 9 (1): 49-89.
Shao H-B, Chu L-Y, Lu Z-H, Kang C-M (2008) Primary antioxidant free radical scavenging and redox signaling pathways in higher plant cells. Int J Biol Sci 4 (1): 8-14
Shetty N P, Lyngs Jørgensen H J, Due Jensen J, Collinge D B, Shekar Shetty H (2008) Roles of reactive oxygen species in interactions between plants and pathogens. European Journal of Plant Pathology 121: 267-280
Shetty N P, Kristensen B K, Newman M-A, Mollera K, Gregersen P L, Jorgensen H J L (2003) Association of hydrogen peroxide with restriction of Septoria tritici in resistant wheat. Physiological and Molecular Plant Pathology 62 (6): 333-346
Shetty N P, Mehrabi R, Lütken H, Haldrup A, Kema G H J, Collinge D B, Jorgensen H J L (2007) Role of hydrogen peroxide during the interaction between the hemibiotrophic fungal pathogen Septoria tritici and wheat. New Phytologist 174: 637-647
Œlesak I, Libik M, Karpinska B, Karpinski S, Miszalski Z (2007) The role of hydrogen peroxide in regulation of plant metabolism and cellular signalling in response to environmental stresses. Acta Biochimica Polonica 54 (1): 39-50
Torres M A (2010) ROS in biotic interactions. Physiologia Plantarum 138: 414-429
Torres M A, Jones J D G, Dangl J L (2006) Reactive oxygen species signaling in response to pathogens. Plant Physiology 141: 373-378
Van Breusegem F, Bailey-Serres J, Mittler R (2008) Unraveling the tapestry of networks involving reactive oxygen species in plants. Plant Physiology 147: 978-984
Vidal G, Ribas-Carbo M, Garmier M, Dubertret G, Rasmusson A G, Mathieu C, Foyer C H, Paepe R D (2007) Lack of respiratory chain complex I impairs alternative oxidase engagement and modulates redox signaling during elicitor-induced cell death in T. The Plant Cell Online 19 (2): 640-655
Wientjes F B, Segal A W (1995) NADPH oxidase and the respiratory burst. Seminars in Cell Biology 6 (6): 357-365
Wojtaszek P (1997) Oxidative burst : an early plant response to pathogen infection. Biochem. J. 322: 681-692
Yoda H, Yamaguchi Y, Sano H (2003) Induction of hypersensitive cell death by hydrogen peroxide produced through polyamine degradation in tobacco plants. Plant Physiology 132 (4): 1973-1981
Yoda H, Hiroi Y, Sano H (2006) Polyamine oxidase is one of the key elements for oxidative burst to induce programmed cell death in tobacco cultured cells. Plant Physiology 142 (1): 193-206
Zago E D, Morsa S, Dat J F, Alard P, Ferrarini A, Inzé D, Delledonne M, Van Breusegem F (2006) Nitric oxide- and hydrogen peroxide-responsive gene regulation during cell death induction in tobacco. Plant Physiology 141 (2): 404-411
Zaninotto F, La Camera S, Polverari A, Delledonne M (2006) Cross talk between reactive nitrogen and oxygen species during the hypersensitive disease resistance response. Plant Physiology 141: 379-383
Copyright (c) 2016 Biotecnología Vegetal
Biotecnología Vegetal eISSN 2074-8647, RNPS: 2154. ISSN 1609-1841, RNPS: 0397 Editada por: Instituto de Biotecnología de las Plantas. Universidad Central Marta Abreu de Las Villas. Carretera a Camajuaní km 5.5, Santa Clara, Villa Clara, Cuba CP 54 830 Tel: 53 42200124, e-mail: info@ibp.co.cu
Biotecnología Vegetal está bajo una Licencia Creative Commons Atribución-NoComercial 4.0 Internacional.