Efecto estimulador del crecimiento de Bacillus pumilus CCIBP-C5 en plantas de banano cv. INIVIT Pb-2006

Mileidy Cruz-Martín, Ernesto Rocha-Rodríguez, Mayra Acosta-Suárez, Eloísa Rodríguez, Tatiana Pichardo, Berkis Roque, Yelenys Alvarado-Capó

Resumen


Entre las cepas bacterianas que se han seleccionado por su empleo potencial como promotores del crecimiento en Musa spp. se encuentra la cepa Bacillus pumilus CCIBP-C5 la cual fue aislada de la filosfera de este cultivo. Los metabolitos de esta cepa inhiben el crecimiento in vitro de Pseudocercospora fijiensis. Además, tiene efecto promotor del crecimiento en la aclimatización de Musa sp. cv. `Grande naine´. Sin embargo, se requiere demostrar el efecto de esta cepa bajo otras condiciones de cultivo y en otros cultivares de interés. El trabajo tuvo como objetivo evaluar el efecto de la aplicación de B. pumilus CCIBP-C5 en la respuesta morfológica y fisiológica de plantas de banano cv. INIVIT Pb-2006 aclimatizadas. Se aplicó una suspensión bacteriana (DO600nm = 0.1) por inmersión de raíces y se plantaron en bolsas con dos tipos de suelo. Las evaluaciones se realizaron hasta los 70 días de cultivo y se determinaron variables morfo-fisiológicas y varios índices de crecimiento vegetal. Como resultado se observó un efecto promotor del crecimiento de  B. pumilus CCIBP-C5 sobre las plantas de banano cv. INIVIT Pb-2006. Se obtuvo un 100% de supervivencia de las plantas a los 14 días con la aplicación de B. pumilus CCIBP-C5 en ambos tipos de suelo. En estos tratamientos  se observaron los mayores valores de masa fresca y seca respecto al control. Además, se pudo comprobar que el tipo de suelo tuvo una influencia en el desarrollo de las plantas así como en el efecto de B. pumilus CCIBP-C5 sobre las plantas. Se observó un mejor crecimiento de las plantas en el suelo ferralítico rojo respecto al pardo con carbonato. Esta cepa constituye una candidata potencial para la generación de bioproductos para  la aclimatización de plantas de Musa spp.

Palabras clave


Bacillus, bioproducto, Musa spp., promoción del crecimiento, suelo

Texto completo:

PDF

Referencias


Cassán F, Vanderleyden J, Spaepen S (2014) Physiological and agronomical aspects of phytohormone production by model plant-growth-promoting rhizobacteria (PGPR) belonging to the genus Azospirillum. J Plant Growth Regul 33: 440-459; doi: 10.1007/s00344-013-9362-4

Bagyaraj DJ, Sharma MP, Maiti D (2015) Phosphorus nutrition of crops through arbuscular mycorrhizal fungi. Curr Sci 108:1288–93

Contesto C, Milesi S, Mantelin S, Zancarini A, Desbrosses G, Varoquaux F (2010) The auxin-signaling pathway is required for the lateral root response of Arabidopsis to the rhizobacterium Phyllobacterium brassicacearum. Planta 232: 1455–1470; doi: 10.1007/s00425-010-1264-0

Cruz-Martín M, Acosta-Suárez M, Mena E, Roque B, Pichardo T, Alvarado-Capó Y (2018) Effect of Bacillus pumilus CCIBP-C5 on Musa-Mycosphaerella fijiensis interaction. 3 Biotech 8: 122; doi: 10.1007/s13205-018-1152-z

Cruz-Martín M, Acosta-Suárez M, Mena E, Roque B, Pichardo T, Alvarado-Capó Y (2017) Antifungal activity of Musa phyllosphere Bacillus pumilus strain against Mycosphaerella fijiensis Morelet. Trop Plant Pathol 42(2): 121–125; doi: 10.1007/s4085 8-017-0139-3

Cruz-Martín M, Mena E, Sánchez-García C, Roque B, Acosta-Suárez M, Pichardo T, Leiva-Mora M, Alvarado-Capó Y (2015) The effects of plant growth promoting Bacillus pumilus CCIBPC5 on ‘Grande naine’ (Musa AAA) plants in acclimatization stage. Biotecnología Vegetal 15(3): 151-156

Dhawi F, Datta R, Ramakrishna W (2015) Mycorrhiza and PGPB modulate maize biomass, nutrient uptake and metabolic pathways in maize grown in mining-impacted soil. Plant Physiol Biochem 97: 390–399

Egamberdieva D, Wirth SJ, Alqarawi AA, Abd-Allah EF, Hashem A (2017) Phytohormones and beneficial microbes: essential components for plants to balance stress and fitness. Front Microbiol 8: 2104; doi: 10.3389/fmicb.2017.02104

Etesami H, Alikhani HA (2016) Rhizosphere and endorhiza of oilseed rape (Brassica napus L.) plant harbor bacteria with multifaceted beneficial effects. Biological Control 94: 11–24

Ghosh A, Singh AB, Kumar RV, Manna MC, Bhattacharyya R, Rahman MM, Misra S (2020) Soil enzymes and microbial elemental stoichiometry as bio-indicators of soil quality in diverse cropping systems and nutrient management practices of Indian Vertisols. Appl Soil Ecol 145: 103304

Goswami M, Deka S (2020) Plant growth-promoting rhizobacteria-alleviators of abiotic stresses in soil: a review. Pedosphere 30: 40-61; doi: 10.1016/S1002-0160(19)60839-8

Hashem A, Abd_Allah E F, Alqarawi A A, Al-Huqail A A, Shah MA (2016) Induction of osmoregulation and modulation of salt stress in Acacia gerrardii Benth. by arbuscular mycorrhizal fungi and Bacillus subtilis (BERA71). Bio Med Res Int: 6294098. doi: 10.1155/2016/6294098

Henin S, Monnier G, Combeau A (1958) Méthode pour l’étude de la stabilité structurale des sols. Annales Agronomiques (1): 73–92, ISSN: 0003-3839

Hernández A, Pérez J, Bosch D, Castro N (2015) Clasificación de los suelos de Cuba. Instituto Nacional de Ciencias Agrícolas (INCA), Mayabeque; ISBN: 978-959-7023-82-1

Marín-Guirao JI, Rodríguez-Romera P, Lupión-Rodríguez B, Camacho-Ferre F, Tello-Marquina JC (2016) Effect of Trichoderma on horticultural seedlings’ growth promotion depending on inoculum and substrate type. J Appl Microbiol 121: 1095-1102; doi: 10.1111/jam.13245

Martins SJ, Rocha GA, de Melo HC, de Castro Georg R, Ulhôa CJ, de Campos Dianese É (2018) Plant-associated bacteria mitigate droughtstress in soybean. Environ Sci Pollut Res Int 25: 13676–13686. doi: 10.1007/s11356-018-1610-5

NC-51 (1999) Calidad del suelo. Análisis químico. Determinación del porciento de materia orgánica. Primera edición, Oficina Nacional de Normalización, La Habana, Cuba. , 9 p.

NC-52 (1999) Calidad del suelo. Determinación de las formas móviles de fósforo y potasio. Primera edición, Oficina Nacional de Normalización, La Habana, Cuba., 12 p.

NC-ISO-10390 (1999) Calidad del suelo. Determinación de pH. Primera edición, Oficina Nacional de Normalización, La Habana, Cuba, 10p.

Nephali L, Piater LA, Dubery IA, Patterson V, Huyser J, Burgess K, Tugizimana F (2020) Biostimulants for plant growth and mitigation of abiotic stresses: A metabolomics perspective. Metabolites 10: E505; doi: 10.3390/metabo10120505

Nomura ES, Damatto ER, Fuzitani EJ, Saes LA, Jensen E (2012) Aclimatização de mudas micropropagadas de bananeira ‘Grand Naine’ com aplicação de biofertilizantes em duas estações do ano. Revista Ceres 59(4): 518-529

Pérez-Jaramillo, JE, Carrión VJ, de Hollander M, Raaijmakers JM (2018) The wild side of plant microbiomes. Microbiome 6: 143

Poudel, M, Mendes R, Costa LAS, Bueno CG, Meng Y, Folimonova SY, Garrett KA, Martins SJ (2021) The role of plant-associated bacteria, fungi, and viruses in drought stress mitigation. Front Microbiol 12: 743512; doi: 10.3389/fmicb.2021.743512

Poveda I, Cruz-Martín M, Sánchez-García C, Acosta-Suárez M, Leiva-Mora M, Roque B, Alvarado-Capó Y (2010) Caracterización de cepas bacterianas aisladas de la filosfera de Musa spp. con actividad antifúngica in vitro frente a Mycosphaerella fijiensis. Biotecnología vegetal 10(1): 57-61

Singh K, Mishra AK, Singh B, Singh RP, Patra DD (2016) Tillage effects on crop yield andphysicochemical properties of sodic soils. Land Degrad Dev 27: 223–230

Timmusk S, Behers L, Muthoni J, Muraya A, Aronsson AC (2017) Perspectives and challenges of microbial application for crop improvement. Front Plant Sci 8:49

Tsolakidou MD, Stringlis IA, Fanega-Sleziak N, Papageorgiou S, Tsalakou A, Pantelides IS (2019) Rhizosphere-enriched microbes as a pool to design synthetic communities for reproducible beneficial outputs. FEMS Microbiol Ecol 95: fiz138

Vageler P, Alten F (1931) Böden des nil und gash IV. Zeitschrift für Pflanzenernährung, Düngung, Bodenkunde. 22 (2):191-267

Yadav R, Ror P, Rathore P, Ramakrishna W (2020) Bacteria from native soil in combination with arbuscular mycorrhizal fungi augment wheat yield and biofortification. Plant Physiol Biochem 150: 222–233

Yadav R, Ror P, Rathore P, Kumar S (2021) Bacillus subtilis CP4, isolated from native soil in combination with arbuscular mycorrhizal fungi promotes biofortification, yield and metabolite production in wheat under field conditions. Journal of Applied Microbiology 131(1): 339-359




Copyright (c) 2024 Biotecnología Vegetal

Biotecnología Vegetal eISSN 2074-8647, RNPS: 2154. ISSN 1609-1841, RNPS: 0397 Editada por: Instituto de Biotecnología de las Plantas. Universidad Central Marta Abreu de Las Villas. Carretera a Camajuaní km 5.5, Santa Clara, Villa Clara, Cuba CP 54 830 Tel: 53 42200124, e-mail: info@ibp.co.cu

Licencia Creative Commons
Biotecnología Vegetal
está bajo una Licencia Creative Commons Atribución-NoComercial 4.0 Internacional.