Cultivo de tejidos y transformación genética en Glycine max (L.) Merrill
Resumen
En este trabajo se realiza una breve revisión sobre los antecedentes del cultivo de tejidos y la transformación genética en el cultivo de la soya, así como una introducción al origen, distribución e importancia del cultivo. Se pretende poner a disposición del lector un compendio de resultados como preámbulo para el desarrollo de futuras investigaciones en la mejora genética de este cultivo por métodos biotecnológicos.
Palabras clave: biotecnológicos, cultivo, in vitro, mejora genética, soya
Referencias
Bailey, MA, Boerma HR, Parrott WA (1993) Genotype effects on proliferative embryogenesis and plant regeneration of soybean. In Vitro Cell Dev. Biol. 29:102– 108
Beversdorf, WD, Bingham ET (1977) Degrees of differentiation obtained in tissue cultures of Glycine species. Crop Science 17: 307–311
Bobrowski, Vera, Dode L (2006) Otimização do método de transformação transitória de soja via bombardeamento de conjuntos embriogênicos. Agrociencias Pelotas 12 (3): 375-377
Bolivar, Jenny (2006) Advances in embryogenesis and organogenesis in common bean (Phaseolus vulgaris L.). Thesis of Master of Science in Biology, University of Puerto Rico, Mayagüez Campus, 140 p.
Bonacin, GA, Di Mauro, AO, De Oliveira, RC, Perecin, D (2000) Induction of somatic embryogenesis in soybean: physicochemical factors influencing the development of somatic embryos. Genetics and Molecular Biology 23 (4): 865 – 868
Broughton, W.J, Hernandez G, Blair M, Beebe S Gepts P, Vanderleyden, J (2003) Beans (Phaseolus spp.) -model food legumes. Plant and Soil 252: 55-128
Bueno, M, Severin C, Gattuso S, Giubileo G (2004) Inducción de callos embriogénicos en raíces de Soja (Glycine max). Ciencia e Investigación Agraria 31(1): 13-19
Cao, D, Hou W, Song S, Sun H, Wu C, Gao Y, Han T (2009) Assessment of conditions affecting Agrobacterium rhizogenes-mediated transformation of soybean. Plant Cell Tiss. Organ Cult. 96:45–52
Castro, OM, Prado H, Sevedoi ACR, Cardosoi EJBM (1993) Avaliação da atividade de microrganismos do solo em diferentes sistemas de manejo de soja. Scientia Agrícola 50: 212-219
Chandra, A, Pental D (2003) Regeneration and transformation of grain legumes: an overview. Current Sciences 84 (3): 381-387
Chee, P P, Fober KA, Slightom JL (1989) Transformation of soybean (Glycine max) by infecting germinating seeds with A. tumefaciens. Plant Physiology 91:1212-1218
Chowrira, GM, Akella V, Fuerst PE, Lurquin PF (1996) Transgenic grain legumes obtained by in planta electroporation-mediated gene transfer. Molecular Biotechnology 5: 85-96
Christianson, ML, Warnick DA, Carlson PS (1983) A morphogenetically competent soybean suspension culture. Science 222: 632-634
Clemente, TE, La Vallee BJ, Howe AR, Conner-Ward D, Rozman RJ, Hunter PE, Broyles DL, Kasten DS, Hinchee MA (2000) Progeny analysis of glyphosate selected transgenic soybeans derived from Agrobacterium-mediated transformation. Crop Science 40: 797-803
Coelho Da Silva, A, Sulzbacher A, Azevedo R, Góes AC (2003) In Vitro induction of callus from cotyledon and hypocotyl explants of Glycine wightii (Wight & Arn.). Verdc. Ciencia y Agrotecnología Lavras 27 (6): 1277-1284
Das, D, Reddy M, Upadhyaya K, Sopory, SK (2002) An efficient leaf-disc culture method for the regeneration via somatic embryogenesis and transformation of grape (Vitis vinifera L.). Plant Cell Rep. 20: 991-1005
Droste, A, Pasquali G, Bodanese-Zanettini MH (2000) Integrated bombardment and Agrobacterium transformation system: an alternative method for soybean transformation. Plant Molecular Biolology Reports 18: 51-59
Droste, A, Pasquali G, Bodanese-Zanettini MH (2002) Transgenic fertile plants of soybean (Glycine max (L.) Merill) obtained from bombarded embryogenic tissue. Euphytica 127: 367-376
Dufourmantel, N, Pelissier B, Garcon F, Peltier G, Ferullo JM, Tissot G (2004) Generation of fertile transplastomic soybean. Plant Molecular Biology 55: 479–489
Ebert, A, Taylor HF (1990) Assessment of the changes of 2,4-dichlorophenoxyacetic acid concentrations in plant tissue culture media in the presence of activated charcoal. Plant Cell, Tissue and Organ Culture 20:165– 172
Finer, JJ (1988) Apical proliferation of embryogenic tissue of soybean [Glycine max (L.) Merrill]. Plant Cell Reports 7: 236-241
Finer, K., Finer JJ (2000) Use of Agrobacterium expressing green fluorescent protein to evaluate colonization of sonication-assisted Agrobacterium mediated transformation-treated soybean cotyledons. Letters in Applied Microbiology 30: 406-410
Finer, JJ, McMullen MD (1991) Transformation of soybean via particle bombardment of embryogenic suspension culture tissue. In Vitro Cell Development Biology 27:175–182
Finer, JJ, Nagasawa A (1988) Development of an embryogenic suspension culture of soybean (Glycine max L. Merrill.). Plant Cell Tissue Organ Cult 15:125– 136
Gamborg, OL, Miller RA, Ojima K (1968) Plant cell cultures. I. Nutrient requirements of suspension cultures of soybean root cells. Exp. Cell Res. 50:151–158
Gazzoni, DL (1995) Botánica. En: FAO (ed.). El cultivo de la soya en los Trópicos: Mejoramiento y Producción, pp. 1 – 12. FAO. Roma
Gazzoni, DL (1994) Tropical soybean improvement and production. En: FAO (ed.), pp. 1-12. FAO. Roma
Gi, Jang, Ro P, Kwang K (2001) Plant regeneration from embryogenic suspension cultures of soybean (Glycine max [L] Merrill). Journal of Plant Biotechnology 3 (2): 101-106
Griga, M (2000) Morphological alterations in sterile mutant of Pisum sativum obtained via somatic embryogenesis. Biologia Plantarum 43 (2): 161-165
Hammatt, N, Davey M (1987) Somatic embryogenesis and plant regeneration from cultured zygotic embryos of soybean (Glycine max L. Merr.). J Plant Physiology 128: 219–226
Hinchee, MAW, Connor-Ward DV, Newell CA, McDonnell RE, Sato SJ, Gasser CS, Fischhoff DA, Re DB, Fraley RT, Horsch RB (1988) Production of transgenic soybean plants using Agrobacterium-mediated DNA transfer. Bio/Technology 6:915–922
Hiraga, S, Minakawa H, Takahashi K, Takahashi R, Hajika M, Harada K, Ohtsubo N (2007) Evaluation of somatic embryogenesis from immature cotyledons of Japanese soybean cultivars. Plant Biotechnology 24: 435–440
Hofmann, N, Nelson RL, Korban SS (2004) Influence of media components and pH on somatic embryo induction in three genotypes of soybean. Plant Cell Tissue Organ Cult. 77:157–163
Hong, HP, Zhang H, Olhoft P, Hill S, Wiley H, Toren E, Hillbrand H, Jones T, Cheng M (2007) Organogenic callus as the target for plant regeneration and transformation
via Agrobacterium in soybean (Glycine max (L.) Merr.). In Vitro Cell Dev. Biol. Plant 43:558–568
Hu, CH, Wang L (1999) In plant soybean transformation technologies developed in China: procedure, confirmation and field performance. In Vitro Cell Dev. Biol. Plant 35: 417– 420
Jain, A, Punia MS, Behl RK (2008) Effect of genotype and medium on callus induction and plant regeneration in soybean (Glycine max L.). National Journal Plant Improvement 10 (1): 53-57
James, Clive (2008) Situación mundial de la comercialización de cultivos biotecnológicos/transgénicos en 2008. ISAAA Brief No 39. ISAAA: Ithaca, NY
Klink, V P, MacDonald M, Martins V, Soo-Chul P, Kyung-Hwan K, So-Hyeon B, Benjamin M (2008) MiniMax, a new diminutive Glycine max genotype with a rapid life cycle, embryogenic potential and transformation capabilities. Plant Cell, Tissue and Organ Culture 92 (2): 183-195
Komatsuda, T, Kaneko K, Oka S (1991) Genotype x sucrose interactions for somatic embryogenesis in soybean. Crop Sci. 31:333–337
Ko, TS, Korban SS (2004) Enhancing the frequency of somatic embryogenesis following Agrobacterium-mediated transformation of immature cotyledons of soybean [Glycine max (L.) Merrill.]. In Vitro Cell Dev. Biol. Plant 40:552–558
Ko, TS, Lee S, Farrand SK, Korban SS (2004) A partially disarmed vir helper plasmid, pKYRT1, in conjunction with 2,4-dichlorophenoxyacetic acid promotes emergence of regenerable transgenic somatic embryos from immature cotyledons of soybean. Planta 218: 536-541
Ko TS, Lee S, Krasnyanski S, Korban SS (2003) Two critical factors are required for efficient transformation of multiple soybean cultivars: Agrobacterium strain and orientation of immature cotyledonary explant. Theoretical Applied Genetics 107:439–447
Lazzeri, PA, Hildebrand D F, Collins GBA (1985) A procedure for plant regeneration from immature cotyledon tissue of soybean. Plant Mol. Biol. Rep. 3:160–167 Lazzeri, PA, Hildebrand DF, Collins GB (1987) Soybean somatic embryogenesis: effects of hormones and culture manipulations. Plant Cell Tissue Organ Cult. 10:197–208
Lippmann, B, Lippmann G (1984) Induction of somatic embryos in cotyledonary tissue of soybean, Glycine max L. Merr. Plant Cell Rep. 3:215–218
Liu, SJ, Wei ZM, Huang JQ (2008) The effect of co-cultivation and selection parameters on Agrobacterium-mediated transformation of Chinese soybean varieties. Plant Cell Rep. 27:489-498
McClean, PE, Lavin M, Gepts P, Jackson SA (2008) Phaseolus vulgaris: A Diploid Model for Soybean. En: G. Stacey (ed.), Genetics and Genomics of Soybean, pp.55-76. Springer Science+Business Media. Dordrech
Moon, H, Hildebrand, D (2003) Effects of proliferation, maturation and desiccation methods on conversion of soybean somatic embryos. In vitro Cell. and Dev. Biol.-Plant 39: 623-628
Murashige, T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiology Plant 15:473–497
Namasivayam, P (2007) Acquisition of embryogenic competence during somatic embryogenesis. Plant Cell Tiss. Cult. 90: 1-8
Olhoft, PM, Flagel LE, Donovan CM, Somers DA (2003) Efficient soybean transformation using hygromycin B selection in the cotyledonary-node method. Journal Plant Biotec. 216:723–735
Olhoft, PM, Flagel LE, Somers DA (2004) T-DNA locus structure in a large population of soybean plants transformed using the Agrobacterium-mediated cotyledonary-node method. Journal Plant Biotechnology 2: 289 – 300
Olhoft, PM, Lin K, Galbraith J, Nielsen NC, Somers DA (2001) The role of thiol compounds in increasing Agrobacterium-mediated transformation of cotyledonary-node cells. Plant Cell Report 20: 731–737
Olhoft, PM, Somers DA (2001) L-Cysteine increases Agrobacterium-mediated T-DNA delivery into soybean cotyledonary-node cells. Plant Cell Report 20: 706 – 711
Olhoft, PM, Somers DA (2007) I.1 Soybean. En: EC Pua, MR Davey (Eds.) Biotechnology in Agriculture and Forestry, Vol. 61. Transgenic Crops VI. Springer-Verlag, Berlin Heidelberg
Ortiz, R, de la Fé C, Ponce M (2004) Evaluación de métodos de almacenaje de semilla de soya (Glycine max. (L.) Merrill) en condiciones de bajos insumos. Cultivos Tropicales 25 (3): 49–58
Parrott, WA, Dryden G, Vogt S, Hildebrand DF, Collins GB, Williams EG (1988) Optimization of somatic embryogenesis and embryo germination in soybean. In Vitro Cell Dev. Biol. 24: 817 - 820
Parrott, WA, Hoffman LM, Hildebrand DF, Williams EG, Collins GB (1989) Recovery of primary transformants of soybean. Plant Cell Reports 7: 615-617
Paz, MM, Shou H, Guo Z, Zhang Z, Banerjee AK, Wang K (2004) Assessment of conditions affecting Agrobacterium-mediated soybean transformation using
the cotyledonary node explant. Euphytica 136: 167 – 179
Paz, MM, Martinez JC, Kalvig AB, Fonger TM, Wang K (2006) Improved cotyledonary node method using an alternative explant derived from mature seed for efficient Agrobacterium-mediated soybean transformation. Plant Cell Rep. 25: 206-213.
Penichet, Marlene (2008) La Producción de granos: estrategia de diversificación en la agricultura cubana actual. Revista Académica de Economía, Observatorio de la Economía Latinoamericana 95. [en línea] En: http:/ /www.eumed.net/cursecon/ecolat/cu/2008/mcp.htm [consulta: 4 de octubre de 2008]
Ponce, M, Ortiz R, de la Fé C, Moya C (2002) Estudio comparativo de nuevas variedades de soya (Glycine max (L.) Merr) para las condiciones de primavera en Cuba. Cultivos Tropicales 23 (2): 55-58
Radhakrishnan, R, Ranjitha Kumari BD (2007) Callus induction and plant regeneration of Indian soybean (Glycine max (L.) Merr. cv. CO3) via half seed explant culture. Journal of Agricultural Technology 3 (2): 287-297
Radhakrishnan, R, Ranjitha Kumari BD (2009) Changes in Protein Content in Micropropagated and Conventional Soybean Plants (Glycine max (L.) Merr.). World Journal of Agricultural Sciences 5 (2): 186-189
Reddy, MS, Dinkins RD, Collins GB (2003) gene silencing in transgenic soybean plants transformed via particle bombardment. Plant Cell Report 21: 676-683
Ridner, E (2006) Valor nutricional de la soja. En: Ridner, Edgardo (Ed) Soja, propiedades nutricionales y su impacto en la salud, pp. 8-32. Grupo Q S. A: Sociedad Argentina de Nutrición. Buenos Aires
Sairam, RV, Franklin G, Hassel R, Smith B, Meeker K, Kashikar N, Parani M, Abed DA, Ismail S, Berry K, Goldman SL (2003) A study on the effect of genotypes, plant growth regulators and sugars in promoting plant regeneration via organogenesis from soybean cotyledonary nodal callus. Plant Cell Tissue Organ Cult. 75: 79–85
Samoylov, VM, Tucker DM, Parrott WA (1998) Soybean [Glycine max (L.) Merrill] embryogenic cultures: the role of sucrose and total nitrogen content on proliferation. In Vitro Cell Dev. Biol. Plant 34: 8–13
Santos, KGB, Mundstock E, Bodanese-Zanettini MH (1997) Genotype-especific normalization of soybean somatic embryogenesis through the use of ethylene inhibitor. Plant Cell Rep. 16: 859-864
Schmidt, MA, Tucker DM, Cahoon EB, Parrott WA (2005) Towards normalization of soybean somatic embryo maturation. Plant Cell Rep. 24: 383–391
Socorro, MA, Martín DS (1989) Soya. Granos, pp. 54-90. Ed. Pueblo y Educación, La Habana
Stacey, G, Vodkin L, Parrott WA, Shoemaker RC (2004) National science foundation-sponsored workshop report. Draft plan for soybean genomics. Plant Physiology 135: 59–70
Tran Thi Cuc Hoa (2008) Efficiency of developing transgenic soybean from the varieties MTÐ 176, HL 202, Maverick and Williams-82 by cotyledonary-node method using Agrobacterium tumefaciens- mediated transformation. Journal of Agriculture and Rural Development 1:14-19
Trick, HN, Finer JJ (1998) Sonication-assisted Agrobacterium-mediated transformation of soybean [Glycine max (L.) Merrill] embryogenic suspension culture tissue. Plant Cell Reports 17: 482-488
Valderrama, F, Arango I, Afanador K (2005) Plant transformation mediated by Agrobacterium: Applied Natural Genetic Engineering. Revista Facultad Nacional de Agronomía 58 (1): 2569-2585
Widholm, JM, Dhir SK, Dhir S (1992) Production of transformed soybean plants by electroporation of protoplasts. Physiologia Plantarum 85 (2): 357-361
Wu, HC, du Toit ES, Reinhardt CF (2007) A protocol for direct embryogenesis of Protea cynaroides L. using zygotic embryos and cotyledon tissues. Plant Cell Tiss. Organ Cult. 89: 217-224
Yan, B, Srinivasa Reddy MS, Collins GB, Dinkins RD (2000) Agrobacterium tumefaciens-mediated transformation of soybean [Glycine max (L.) Merrill] using immature zygotic cotyledon explants. Plant Cell Reports 19:1090-1097
Yemets, AI, Radchuk VV, Pakhomov AV, Blum Ya B (2008) Biolistic Transformation of Soybean Using a New Selective Marker Gene Conferring Resistance to Dinitroanilines. Cytology and Genetics 42 (6): 413–419
Zeng, P, Vadnais DA, Zhang Z, Polacco J (2004) Refined glufosinate selection in Agrobacterium-mediated transformation of soybean [Glycine max (L.) Merrill]. Plant Cell Report 22:478–482
Zhang, Z, Xing A, Staswick P, Clemente T (1999) The use of glufosinate as a selective agent in Agrobacterium-mediated transformation of soybean. Plant Cell Tissue Organ Cult 56:37–46
Copyright (c) 2016 Biotecnología Vegetal
Biotecnología Vegetal eISSN 2074-8647, RNPS: 2154. ISSN 1609-1841, RNPS: 0397 Editada por: Instituto de Biotecnología de las Plantas. Universidad Central Marta Abreu de Las Villas. Carretera a Camajuaní km 5.5, Santa Clara, Villa Clara, Cuba CP 54 830 Tel: 53 42200124, e-mail: info@ibp.co.cu
Biotecnología Vegetal está bajo una Licencia Creative Commons Atribución-NoComercial 4.0 Internacional.