Metabolismo de cardenólidos y transformación genética de Digitalis. Potencialidades y retos

Yovanny Izquierdo, Naivy Pérez-Alonso, Elio Jiménez

Resumen


Los cardenólidos son metabolitos secundarios, producidos por las plantas del género Digitalis, que se utilizan ampliamente en el tratamiento de la insuficiencia cardíaca. El fracaso de los intentos por potenciar su producción a partir de técnicas de cultivo in vitro, ha señalado a la transformación genética como una estrategia promisoria para la obtención de plantas altamente productoras. Para alcanzar este objetivo se han desarrollado sistemas de transformación en Digitalis minor y Digitalis lanata, y existen trabajos científicos relacionados en otras especies del género. La selección de genes candidatos para la transformación de Digitalis requiere del conocimiento de la ruta de biosíntesis de cardenólidos, la cual está solo parcialmente establecida. Sin embargo, el descubrimiento reciente de dos genes que codifican esta actividad enzimática en Digitalis purpurea con patrones de expresión diferentes pone en duda esta aseveración. La flexibilidad de la ruta y sus posibles conexiones con otros procesos de síntesis de hormonas entrañan un reto adicional. Por lo tanto, se hacen necesarios estudios funcionales de estos genes y sus vías de señalización para el diseño de estrategias de transformación que maximicen la producción de cardenólidos con un mínimo de posibles efectos colaterales que pudieran dar al traste con la viabilidad de las plantas transformadas. Esta reseña bibliográfica pretende hacer una revisión acerca del metabolismo de los cardenólidos y los esfuerzos por transformar genéticamente plantas del género Digitalis. Sobre esta base se evalúan críticamente las potencialidades de transgenes candidatos para la obtención de plantas de Digitalis con una producción más elevada y estable de glicósidos cardíacos.

Palabras clave: glicósidos cardíacos, progesterona 5-â reductasa, ingeniería metabólica


Texto completo:

PDF HTML

Referencias


Charest PJ, Caléro N, Lachance D, Datla RSS, Duchêsne LC, Tsang EWT (2004) Microprojectile-DNA delivery in conifer species: factors affecting assessment of transient gene expression using the â-glucuronidase reporter gene Plant Cell Reports 12(4): 189-193

Clouse SD , Sasse JM (2003) Brassinosteroids: essential regulators of plant growth and development. Annual review of plant physiology and plant molecular biology 49(1): 427-451

De Clercq J, Zambre M, Montagu MV, Dillen W , Angenon G (2002) An optimized Agrobacterium-mediated transformation procedure for Phaseolus acutifolius A. Gray. Plant Cell Reports 21: 333-340 Ferriar J (1799) An Essay on the Medical Properties of Digitalis purpurea, or foxglove. Manchester

Finsterbusch A, Lindemann P, Grimm R, Eckerskorn C, Luckner M (1999) Ä5-3â-Hydroxysteroid dehydrogenase from Digitalis lanata Ehrh. – a multifunctional enzyme in steroid metabolism? Planta 209(4): 478-486

Gärtner DE, Seitz HU (1993) Enzyme activities in cardenolide-accumulating, mixotrophic shoot cultures of Digitalis purpurea L. Journal of Plant Physiology 141: 269-275

Gavidia I, Tarrío R, Rodríguez-Trelles F, Pérez-Bermúdez P, Ulrich Seitz H (2007) Plant progesterone 5[beta]-reductase is not homologous to the animal enzyme. Molecular evolutionary characterization of P5[beta]R from Digitalis purpurea. Phytochemistry 68(6): 853-864

Hagimori M, Matsumoto T, Kisaki T (1980) Studies on the production of Digitalis cardenolides by plant tissue culture I. Determination of digitoxin and digoxin contents in first and second passage calli and organ redifferentiating calli of several Digitalis species by radioimmunoassay. Plant and cell physiology 21(8): 1391-1404

Hagimori M, Matsumoto T , Obi Y (1982) Studies on the Production of Digitalis Cardenolides by Plant Tissue Culture: II. Effect of light and plant growth substances on digitoxin formation by undifferentiated cells and shoot-forming cultures of Digitalis purpurea l. grown in liquid media. Plant Physiol. 69(3): 653-656

Hagimori M, Matsumoto T, Obi Y (1983) Effects of mineral salts, initial pH and precursors on Digitoxin formation by shoot-forming cultures of Digitalis purpurea L. Grown in liquid media. Agricultural and Biological Chemistry 47(3): 565-571

Herl V, Albach D, Müller-Uri F, Bräuchler C, Heubl G , Kreis W (2008) Using progesterone 5â-reductase, a gene encoding a key enzyme in the cardenolide biosynthesis, to infer the phylogeny of the genus Digitalis. Plant Systematics and Evolution 271(1): 65-78

Herl V, Fischer G, Müller-Uri F , Kreis W (2005) Molecular cloning and heterologous expression of progesterone 5â-reductase from Digitalis lanata Ehrh. Phytochemistry 67(3): 225-231

Herl V, Fischer G, Reva VA, Stiebritz M, Muller YA, Müller-Uri F, Kreis W (2009) The vep1 gene (At4g24220) encodes a short-chain dehydrogenase/ reductase with 3-oxo-[Delta]4,5-steroid 5[beta]-reductase activity in Arabidopsis thaliana L. Biochimie 91(4): 517-525

Hirotani M, Furuya T (1977) Restoration of cardenolide-synthesis in redifferentiated shoots from callus cultures of Digitalis purpurea. Phytochemistry 16(5): 610-611

Hoelz H, Kreis W, Haug B , Reinhard E (1992) Storage of cardiac glycosides in vacuoles of Digitalis lanata mesophyll cells. Phytochemistry 31(4): 1167-1171

Hornberger M, Böttigheimer U, Hillier-Kaiser A, Kreis W (2000) Purification and characterisation of the cardenolide-specific[beta]-glucohydrolase CGH II from Digitalis lanata leaves. Plant physiology and biochemistry 38(12): 929-936

Hultén E (1968) Flora of Alaska and Neighbourin territories. Stanford University Press. Standford, CA. Iino M, Nomura T, Tamaki Y, Yamada Y, Yoneyama K, Takeuchi Y, Mori M, Asami T, Nakano T, Yokota T (2007) Progesterone: Its occurrence in plants and involvement in plant growth. Phytochemistry 68(12): 1664-1673

Janeczko A, Filek W (2002) Stimulation of generative development in partly vernalized winter wheat by animal sex hormones. Acta Physiologiae Plantarum 24(3): 291-295

Janeczko A, Filek W, Biesaga-Koœcielniak J, Marciñska I , Janeczko Z (2003) The influence of animal sex hormones on the induction of flowering in Arabidopsis thaliana: comparison with the effect of 24-epibrassinolide. Plant Cell, Tissue and Organ Culture 72(2): 147-151

Jun JH, Ha CM, Nam HG (2002) Involvement of the vep1 Gene in vascular strand development in Arabidopsis thaliana. Plant Cell Physiol. 43(3): 323-330

Kreis W, Hensel A , Stuhlemmer U (1998) Cardenolide biosynthesis in foxglove. Planta Medica 64: 491-499

Kreis W, May U, Reinhard E (1986) UDP-glucose:digitoxin 162-O-glucosyltransferase from suspension-cultured Digitalis lanata cells. Plant Cell Reports 5(6): 442-445

Lehmann U, Moldenhauer D, Thomar S, Diettrich B, Luckner M (1995) Regeneration of plants from Digitalis lanata cells transformed with Agrobacterium tumefaciens carrying bacterial genes endoding neomycin phosphotransferase II and â-glucuronidase. Elsevier. Munich

Lindemann P, Luckner M (1997) Biosynthesis of pregnane derivatives in somatic embryos of Digitalis lanata. Phytochemistry 46(3): 507-513

Malcolm S, Zalucki M (1996) Milkweed latex and cardenolide induction may resolve the lethal plant defence paradox. Entomologia Experimentalis et Applicata 80(1): 193-196

May U, Kreis W (1997) Purification and characterization of the cardenolide-specific beta-glucohydrolase CGH I from Digitalis lanata leaves. Plant physiology and biochemistry 35(7): 523-532

Mcmullen MD, Byrne PF, Snook ME, Wiseman BR, Lee EA, Widstrom NW, Coe EH (1998) Quantitative trait loci and metabolic pathways. Proceedings of the National Academy of Sciences of the United States of America 95(5): 1996-2000

Melero CP, Medarde M, San Feliciano A (2000) A short review on cardiotonic steroids and their aminoguanidine analogues. Molecules 5: 51-81

Mueller LA, Zhang P, Rhee SY (2003) AraCyc: A Biochemical Pathway Database for Arabidopsis. Plant Physiology 132(2): 453-460

Neczypor W (1969) Alkaloid content of some native sources of Vinca minor L. (evergreen) under field conditions. Pharmazie 24(5): 273-274

Pérez-Alonso N, Wilken D, Gerth A, Jahn A, Nitzsche H-M, Kerns G, Capote-Perez A, Jiménez E (2009) Cardiotonic glycosides from biomass of Digitalis purpurea L. cultured in temporary immersion systems. Plant Cell Tiss Organ Cult 99: 151–156

Pérez-Bermúdez P, García AaM, Tuñón I, Gavidia I (2010) Digitalis purpurea P5-beta-R2, encoding steroid 5-beta-reductase, is a novel defense-related gene involved in cardenolide biosynthesis. New Phytologist 185(3): 687-700

Pflieger S, Lefebvre V, Causse M (2001) The candidate gene approach in plant genetics: a review. Molecular Breeding 7(4): 275-291

Pradel H, Dumke-Lehmann U, Diettrich B, Luckner M (1997) Hairy root cultures of Digitalis lanata. Secondary metabolism and plant regeneration. Elsevier. Munich

Repke KRH, Schönfeld W, Weiland J, Megges R, Hache A (1989) Design of Enzyme Inhibitors as Drugs,pp. 435-502. Oxford University Press. Oxford

Roig JT (1974) Plantas medicinales, aromáticas o venenosas de Cuba. Editorial Ciencia y Técnica, Instituto del Libro. La Habana

Saito K, Shimomura MYK, Yoshimatsu K, Murakoshi I (1990) Genetic transformation of foxglove (Digitalis purpurea) by chimeric foreign genes and production of cardioactive glycosides. Plant Cell Reports 9: 121-124

Sales E, Muñoz-Bertomeu J, Arrillaga I , Segura J (2007) Enhancement of cardenolide and phytosterol levels by expression of an N-terminally truncated 3-hydroxy-3-methyglutaryl CoA reductase in transgenic Digitalis minor. Planta Medica 73: 605-610

Sales E, Nebauer SG, Arrillaga I, Segura J (2002) Plant hormones and Agrobacterium tumefaciens strain 82.139 induce efficient plant regeneration in the cardenolide-producing plant Digitalis minor. Journal of Plant Physiology 159(1): 9-16

Sales E, Segura J, Arillaga I (2003) Agrobacterium-mediated genetic transformation of the cardenolide-producing plant Digitalis minor. Planta Medica 69: 143-147

Skou JC (1965) enzymatic basis for active transport of Na+ and K+ across cell membrane. Physiol. Rev. 45(3): 596-618

Stuhlemmer U, Kreis W (1996) Cardenolide formation and activity of pregnane-modifying enzymes in cell suspension cultures, shoot cultures and leaves of Digitalis lanata. Plant Physiol Biochem 34: 85-91

Sutor, R, Hoelz H, Kreis W (1990) Lanatoside 15'-O-acetylesterase from Digitalis lanata plants and cell cultures. Elsevier. Munich

Thomas R, Gray P, Ancrews J (1990) Digitalis: its mode of action, receptor, and structure-activity relationships. Advances in Drug Research 19: 311-562

Venepoorte R, Van Der Heiden R, Tan Hoopen HJG, J M (1999) Metabolic engineering of plant secondary metabolic pathways fr the production of fine chemicals. Biotechnology letters 21: 467-479

Withering W (1785) An account of the introduction of foxglove into medical practice. Londres

Ylstra B, Touraev A, Brinkmann AO, Heberle-Bors E , Van Tunen AJ (1995) Steroid hormones stimulate germination and tube growth of in vitro matured tobacco pollen. Plant Physiol. 107: 639-643




Copyright (c) 2016 Biotecnología Vegetal

Biotecnología Vegetal eISSN 2074-8647, RNPS: 2154. ISSN 1609-1841, RNPS: 0397 Editada por: Instituto de Biotecnología de las Plantas. Universidad Central Marta Abreu de Las Villas. Carretera a Camajuaní km 5.5, Santa Clara, Villa Clara, Cuba CP 54 830 Tel: 53 42200124, e-mail: info@ibp.co.cu

Licencia Creative Commons
Biotecnología Vegetal
está bajo una Licencia Creative Commons Atribución-NoComercial 4.0 Internacional.