Aspectos generales de las tioredoxinas en plantas

Milady Francisca Mendoza-Rodríguez

Resumen


El cloroplasto es el organelo para la fotosíntesis en células eucariotas. En él la presencia del sistema luz-dependiente ferredoxina/tioredoxina (FTS) y de una tioredoxina reductasa C NADPH-dependiente (NTRC), han estado implicados en la respuesta de defensa y al mismo tiempo constituyen importantes mecanismos redox que proveen poder reductor a las tioredoxinas. Este organelo también tiene un papel crítico en la inmunidad innata de las plantas contra la infección de patógenos, donde las tioredoxinas son las principales responsables de mantener las proteínas en su estado reducido. En el presente trabajo se presenta una revisión de la literatura científica acerca de aspectos importantes de las tioredoxinas de plantas.         

 

Palabras clave: cloroplasto, control redox, estrés, fotosíntesis, inmunidad innata


Texto completo:

PDF (English) HTML (English)

Referencias


Campo S, Manrique S, García-Martínez J, San Segundo B (2008) Production of cecropin A in transgenic rice plants has an impact on host gene expression. Plant Biotechnology Journal 6 (6): 585-608; doi:10.1111/j.1467-7652.2008.00339.x

Caplan JL, Kumar AS, Park E, Padmanabhan MS, Hoban K, Modla S, Czymmek K, Dinesh-Kumar SP (2015) Chloroplast stromules function during innate immunity. Developmental Cell 34 (1): 45-57; doi:10.1016/j.devcel.2015.05.011

Chi W, Feng P, Ma J, Zhang L (2015) Metabolites and chloroplast retrograde signaling. Current Opinion in Plant Biology 25: 32-38; doi:10.1016/j.pbi.2015.04.006

Diatchenko L, Chris Lau Y-F, Campbell AP, Chenchik A, Moqadam F, Huang B, Lukyanov S, Lukyanov K, Gurskaya N, Sverdlov ED, Siebert PD (1996) Suppression subtractive hybridization: a method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proceedings of the National Academy of Sciences USA 93 (12): 6025-6030

Dietz K-J, Pfannschmidt T (2011) Novel regulators in photosynthetic redox control of plant metabolism and gene expression. Plant Physiology 155 (4): 1477-1485

Dos Santos CV, Rey P (2006) Plant thioredoxins are key actors in the oxidative stress response. Trends in Plant Science 11 (7): 329-334

Hossain MA, Bhattacharjee S, Armin S-M, Qian P, Xin W, Li H-Y, Burritt DJ, Fujita M, Tran L-SP (2015) Hydrogen peroxide priming modulates abiotic oxidative stress tolerance: insights from ROS detoxification and scavenging. Frontiers in Plant Science 6: 420; doi:10.3389/fpls.2015.00420

Ishiga Y, Ishiga T, Wangdi T, Mysore KS, Uppalapati SR (2012) NTRC and chloroplast-generated reactive oxygen species regulate Pseudomonas syringae pv. tomato disease development in tomato and Arabidopsis. Molecular Plant-Microbe Interactions 25 (3): 294-306; doi:10.1094/ MPMI -05-11-0130

Ishiga Y, Ishiga T, Ikeda Y, Matsuura T, Mysore KS (2016) NADPH-dependent thioredoxin reductase C plays a role in nonhost disease resistance against Pseudomonas syringae pathogens by regulating chloroplast-generated reactive oxygen species. PeerJ 4: e1938; doi:10.7717/peerj.1938

Ishiga Y, Uppalapati SR, Ishiga T, Elavarthi S, Martin B, Bender CL (2009) Involvement of coronatine-inducible reactive oxygen species in bacterial speck disease of tomato. Plant Signaling and Behavior 4 (3): 237-239; doi:10.4161/psb.4.3.7915

Kangasjarvi S, Neukermans J, Li S, Aro E-M, Noctor G (2012) Photosynthesis, photorespiration, and light signalling in defence responses. Journal of Experimental Botany 63 (4): 1619-1636; doi:10.1093/jxb/err402

Kangasjärvi S, Tikkanen M, Durian G, Aro E-M (2014) Photosynthetic light reactions - An adjustable hub in basic production and plant immunity signaling. Plant Physiology and Biochemistry 81: 128-134; doi:10.1016/j.plaphy.2013.12.004

Karpinski S, Szechynka‐Hebda M, Wituszynska W, Burdiak P (2013) Light acclimation, retrograde signalling, cell death and immune defences in plants. Plant, Cell & Environment 36 (4): 736-744; doi: 10.1111/pce.12018

Laloi C, Mestres-Ortega D, Marco Y, Meyer Y, Reichheld J-P (2004) The Arabidopsis cytosolic thioredoxin h5 gene induction by oxidative stress and its W-box-mediated response to pathogen elicitor. Plant Physiology 134 (3): 1006-1016; 10.1104/pp.103.035782

Lehmann S, Serrano M, L’Haridon F, Tjamos SE, Metraux J-P (2015) Reactive oxygen species and plant resistance to fungal pathogens. Phytochemistry 112: 54-62; doi:10.1016/j.phytochem.2014.08.027

Lim CJ, Kim WB, Lee B-S, Lee HY, Kwon T-H, Park JM, Kwon S-Y (2010) Silencing of SlFTR-c, the catalytic subunit of ferredoxin:thioredoxin reductase, induces pathogenesis-related genes and pathogen resistance in tomato plants. Biochemical and Biophysical Research Communications 399 (4): 750-754; doi:10.1016/j.bbrc.2010.08.016

Makandar R, Essig JS, Schapaugh MA, Trick HN, Shah J (2006) Genetically engineered resistance to Fusarium head blight in wheat by expression of Arabidopsis NPR1. Molecular Plant-Microbe Interactions 19 (2): 123-129; doi:10.1094/MPMI-19-0123

Martí MC, Florez-Sarasa I, Camejo D, Ribas-Carbó M, Lázaro JJ, Sevilla F, Jiménez A (2011) Response of mitochondrial thioredoxin PsTrxo1, antioxidant enzymes, and respiration to salinity in pea (Pisum sativum L.) leaves. Journal of Experimental Botany 61 (11): 3863-3874; doi:10.1093/jxb/err076

Mendoza-Rodríguez MF, Sánchez-Rodríguez A, Acosta-Suárez M, Roque B, Portal O, Jiménez E (2006) Construcción y secuenciación parcial de una biblioteca sustractiva en ‘Calcutta 4' (Musa AA) en estadio temprano de infección con Mycosphaerella fijiensis Morelet. Biotecnología Vegetal 6 (4): 213-217

Meyer Y, Reichheld JP, Vignols F (2005) Thioredoxins in Arabidopsis and other plants. Photosynthesis Research 86 (3): 419-433

Montrichard F, Alkhalfioui F, Yano H, Vensel WH, Hurkman WJ, Buchanan BB (2009) Thioredoxin targets in plants: The first 30 years. Journal of Proteomics 72 (3): 452-474; doi:10.1016/j.jprot.2008.12.002

Mühlenbock P, Szechyńska-Hebda M, Płaszczyca M, Baudo M, Mateo A, Mullineaux PM, Parker JE, Karpińska B, Karpiński S (2008) Chloroplast signaling and LESION SIMULATING DISEASE1 regulate crosstalk between light acclimation and immunity in Arabidopsis. The Plant Cell 20 (9): 2339-2356

Mukaihara T, Hatanaka T, Nakano M, Oda K (2016) Ralstonia solanacearum Type III effector RipAY is a glutathione-degrading enzyme that is activated by plant cytosolic thioredoxins and suppresses plant immunity. mBio 7 (2): e00359-00316; doi:10.1128/mBio.00359-16

Nishiyama Y, Allakhverdiev SI, Murata N (2011) Protein synthesis is the primary target of reactive oxygen species in the photoinhibition of photosystem II. Physiologia Plantarum 142 (1): 35-46; doi:10.1111/j.1399-3054.2011.01457.x

Nuruzzaman M, Gupta M, Zhang C, Wang L, Xie W, Xiong L, Zhang Q, Lian X (2008) Sequence and expression analysis of the thioredoxin protein gene family in rice. Molecular Genetics and Genomics 280 (2): 139-151; 10.1007/s00438-008-0351-4

Petrov VD, Van Breusegem F (2012) Hydrogen peroxide-a central hub for information flow in plant cells. AoB PLANTS 2012: pls014; doi:10.1093/aobpla/pls014

Rivas S, Rougon-Cardoso A, Smoker M, Schauser L, Yoshioka H, Jones JD (2004) CITRX thioredoxin interacts with the tomato Cf-9 resistance protein and negatively regulates defence. The EMBO Journal 23 (10): 2156-2165; doi: 10.1038/sj.emboj.7600224

Rolland N, Curien G, Finazzi G, Kuntz M, Maréchal E, Matringe M, Ravanel S, Seigneurin-Berny D (2012) The biosynthetic capacities of the plastids and integration between cytoplasmic and chloroplast processes. Annual Review of Genetics 46: 233-264; doi:10.1146/annurev-genet-110410-132544

Seyfferth C, Tsuda K (2014) Salicylic acid signal transduction: the initiation of biosynthesis, perception and transcriptional reprogramming. Frontiers in Plant Science 5: 697; doi:10.3389/fpls.2014.00697

Sharma P, Jha AB, Dubey RS, Pessarakli M (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. Journal of Botany 2012; doi:10.1155/2012/217037

Shim KS, Cho SK, Jeung JU, Jung KW, You MK, Ok SH, Chung YS, Kang KH, Hwang HG, Choi HC, Moon HP, Shin JS (2004) Identification of fungal (Magnaporthe grisea) stress-induced genes in wild rice (Oryza minuta). Plant Cell Reports 22 (8): 599-607; doi:10.1007/s00299-003-0742-2

Sweat TA, Wolpert TJ (2007) Thioredoxin h5 is required for victorin sensitivity mediated by a CC-NBS-LRR gene in Arabidopsis. The Plant Cell 19 (2): 673-687; doi:10.1105/tpc.106.047563

Tikkanen M, Aro E-M (2014) Integrative regulatory network of plant thylakoid energy transduction. Trends in Plant Science 19 (1): 10-17; doi:10.1016/j.tplants.2013.09.003

Tovar-Méndez A, Matamoros MA, Bustos-Sanmamed P, Dietz K-J, Cejudo FJ, Rouhier N, Sato S, Tabata S, Becana M (2011) Peroxiredoxins and NADPH-dependent thioredoxin systems in the model legume Lotus japonicus. Plant Physiology 156 (3): 1535-1547; doi:10.1104/pp.111.177196

Yuan Y, Zhong S, Li Q, Zhu Z, Lou Y, Wang L, Wang J, Wang M, Li Q, Yang D, He Z (2007) Functional analysis of rice NPR1-like genes reveals that OsNPR1/NH1 is the rice orthologue conferring disease resistance with enhanced herbivore susceptibility. Plant Biotechnology Journal 5 (2): 313-324; doi: 10.1111/j.1467-7652.2007.00243.x




Copyright (c) 2017 Biotecnología Vegetal

Biotecnología Vegetal eISSN 2074-8647, RNPS: 2154. ISSN 1609-1841, RNPS: 0397 Editada por: Instituto de Biotecnología de las Plantas. Universidad Central Marta Abreu de Las Villas. Carretera a Camajuaní km 5.5, Santa Clara, Villa Clara, Cuba CP 54 830 Tel: 53 42200124, e-mail: info@ibp.co.cu

Licencia Creative Commons
Biotecnología Vegetal
está bajo una Licencia Creative Commons Atribución-NoComercial 4.0 Internacional.