Efecto del tiempo de inoculación en la eficiencia de la transformación mediada por Agrobacterium de Musa cv. ‘Grande naine’ (AAA)

Mairenys Concepción-Hernández, Maritza Reyes, Mayelín Rodríguez, Rafael Gómez-Kosky, Borys Chong-Pérez

Resumen


El incremento en el tiempo de inoculación durante la transformación mediada por Agrobacterium ha mostrado que aumenta la eficiencia de la transformación en varias especies de plantas. En este trabajo se determinó el efecto del tiempo de inoculación en combinación con la adición de espermidina (Spd) en la eficiencia de la transformación genética mediada por Agrobacterium tumefaciens del cv. ‘Grande naine’ (Musa AAA). Las suspensiones celulares embriogénicas de banano fueron inoculadas con la cepa bacteriana EHA 105 que contiene el vector binario pFAJ3000. Se compararon seis condiciones de inoculación (6 h, 6 h+Spd, 12 h, 12 h+Spd, 24 h, 24 h+Spd) en cuanto a la expresión transitoria GUS y el número de colonias embriogénicas formadas. Además, se analizaron fragmentos de hojas de 24 plántulas regeneradas para la presencia y expresión de los transgenes. Consecuentemente, las muestras por 24 h con 1 mM de espermidina mostraron la mayor eficiencia de transformación, expresada en número de puntos azules y colonias regeneradas después de la selección. En este trabajo se muestra por primera vez que el aumento del tiempo de inoculación en combinación con el uso de espermidina incrementa la eficiencia de la transformación genética mediada por Agrobacterium en el cultivar ‘Grande naine’ de banano. 

 

Palabras clave: banano, β-glucuronidasa, genotipo, suspensiones celulares embriogénicas, PCR


Texto completo:

PDF HTML (English)

Referencias


Arinaitwe G (2008) An improved Agrobacterium-mediated transformation method for banana and plantain (Musa spp.). Doctoral thesis dissertation, Catholic University Leuven, Leuven, Belgium

Arinaitwe G, Rem S, Strosse H, Swennen R and Sági L (2004) Agrobacterium- and particle bombardment-mediated transformation of a wide range of banana cultivars. In: Jain SM, Swennen R (eds). Banana improvement: Cellular, molecular biology, and induced mutations, pp. 99–109. Science Publishers, Plymouth

Chen S, Jin W, Wang M, Zhang F, Zhou J, Jia Q, Ping Wu (2003) Distribution and characterization of over 1000 T-DNA tags in rice genome. The Plant Journal 36(1): 105–113; doi: 10.1046/j.1365-313X.2003.01860.x.

Chong-Pérez B, Reyes M, Rojas L, Ocaña B, Pérez B, Kosky RG, Angenon G (2012 a) Establishment of embryogenic cell suspension cultures and Agrobacterium-mediated transformation in banana cv. ‘Dwarf Cavendish’ (Musa AAA): effect of spermidine on transformation efficiency. Plant Cell Tissue and Organ Culture 111(1): 79–109; doi: 10.1007/s11240-012-0174-1

Chong-Pérez B, Kosky RG, Reyes M, Rojas L, Ocaña B, Tejeda M, Pérez B, Angenon G (2012 b) Heat shock induced excision of selectable marker genes in transgenic banana by the Cre-lox site-specific recombination system. Journal of Biotechnology 159(4): 265–273; doi: 10.1016/j.jbiotec.2011.07.031

Côte F, Domergue R, Monmarson S, Schwendiman J, Teisson C, Escalant JV (1996) Embryogenic cell suspensions from the male flower of Musa AAA cv. ‘Grand naine’. Physiologia Plantarum 97(2): 285-290; doi: 10.1034/j.1399-3054.1996.970211.x

Dan Y, Ow DW (2011) Plant transformation technology revolution in last three decades: historical technology developments in plant transformation. Bentham Science, Sharjah; ISBN: 1608052486

Dan Y, Zhang S, Matherly A (2016) Regulation of hydrogen peroxide accumulation and death of Agrobacterium-transformed cells in tomato transformation. Plant Cell Tissue and Organ Culture 127(1): 229-236; doi: 10.1007/s11240-016-1045-y

De Bondt A, Eggermont K, Druart P, De Vil M, Goderis I, Vanderleyden J, Broekaert WF (1994) Agrobacterium-mediated transformation of apple (Malus x domestica Borkh.): an assessment of factors affecting gene transfer efficiency during early transformation steps. Plant Cell Reports 13(10): 587–593; doi: 10.1007/BF00234517

Ditt RF, Kerr KF, de Figueiredo P, Delrow J, Comai L, Nester EW (2006) The Arabidopsis thaliana transcriptome in response to Agrobacterium tumefaciens. Molecular Plant-Microbe Interactions 19 (6): 665–681; doi: 10.1094/MPMI-19-0665

Ganapathi TR, Higgs NS, Balint-Kurti PJ, Van Eck J (2001) Agrobacterium-mediated transformation of embryogenic cell suspensions of banana cultivar Rasthali (AAB). Plant Cell Reports 20 (2): 157–62; doi: 10.1007/s002990000287

Ghosh A, Ganapathi TR, Nath P, Bapat VA (2009) Establishment of embryogenic cell suspension cultures and Agrobacterium-mediated transformation in an important Cavendish banana cv. Robusta (AAA). Plant Cell Tissue and Organ Culture 97 (2): 131–139; doi: 10.1007/s11240-009-9507-0

Hansen G (2000) Evidence for Agrobacterium-induced apoptosis in maize cells. Molecular Plant-Microbe Interactions 13 (6): 649–657; doi: 10.1094/MPMI.2000.13.6.649

Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO Journal 6 (13): 3901–3907

Kaurilind E, Xu E, Brosché M (2015) A genetic framework for H2O2 induced cell death in Arabidopsis thaliana. BMC Genomics 16 (837); doi: 10.1186/s12864-015-1964-8

Khanna H, Becker D, Kleidon J, Dale J (2004) Centrifugation assisted Agrobacterium tumefaciens-mediated transformation (CAAT) of embryogenic cell suspensions of banana (Musa spp. Cavendish AAA and Lady finger AAB). Molecular Breeding 14 (3): 239–252; doi: 10.1023/B:MOLB.0000047771.34186.e8

Khanna HK, Paul JY, Harding RM, Dickman MB, Dale JL (2007) Inhibition of Agrobacterium-induced cell death by antiapoptotic gene expression leads to very high transformation efficiency of banana. Molecular Plant-Microbe Interactions 20 (9): 1048–1054; doi: 10.1094/MPMI-20-9-1048

Khayat E, Duvdevani A, Lehav E, Ballesteros BA (2004) Somaclonal variation in banana (Musa acuminata cv. Grande Naine). Genetic mechanism, frequency, and application as a tool for clonal selection. In: Jain SM, Swennen R (eds). Banana improvement: Cellular, molecular biology, and induced mutations, pp. 99-109. Science Publishers, Plymouth; ISBN: 1-57808-340-0

Kim S, Veena, Gelvin SB (2007) Genome-wide analysis of Agrobacterium T-DNA integration sites in the Arabidopsis genome generated under non-selective conditions. The Plant Journal 51 (5): 779–791; doi: 10.1111/j.1365-313X.2007.03183.x

Kumar SV, Rajam MV (2005) Polyamines enhance Agrobacterium tumefaciens vir gene induction and T-DNA transfer. Plant Science 168 (2): 475-480; doi: 10.1016/j.plantsci.2004.09.018

Lee CW, Efetova M, Engelmann JC, Kramell R, Wasternack C, Ludwig-Müller J, Deeken R (2009) Agrobacterium tumefaciens promotes tumour induction by modulating pathogen defense in Arabidopsis thaliana. Plant Cell 21 (9): 2948–2962; doi: 10.1105/tpc.108.064576

Liu J-H, Wang W, Wu H, Gong X, Moriguchi T (2015) Polyamines function in stress tolerance: from synthesis to regulation. Frontiers in Plant Science 6 (827); doi: 10.3389/fpls.2015.00827

Marsoni M, Cantara C, Pinto MC, Gadaleta C, Gara L, Bracale M, Vannini C (2010) Exploring the soluble proteome of Tobacco Bright Yellow-2 cells at the switch towards different cell fates in response to heat shocks. Plant Cell and Environment 33 (7): 1161–1175; doi: 10.1111/j.1365-3040.2010.02137.x

Mohapatra D, Mishra S, Sutar N (2010) Banana and its by-product utilization: an overview. Journal of Scientific and Industrial Research 69: 323-329

Moschou PN, Roubelakis-Angelakis KA (2014) Polyamines and programmed cell death. Journal of Experimental Botany 65 (5): 1285-1296; doi: 10.1093/jxb/ert373

Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiologia Plantarum 15 (3): 473-497; doi:10.1111/j.1399-3054.1962.tb08052.x

Pérez-Hernández JB, Remy S, Swennen R, Sági L (2006 a) Banana (Musa spp.). In: Wang K (ed). Methods in molecular biology vol 344: Agrobacterium protocols vol 2, pp. 167–175. Humana Press, Totowa; ISBN: 978-1-59745-131-4

Pérez-Hernández JB, Swennen R, Sági L (2006 b) Number and accuracy of T-DNA insertions in transgenic banana (Musa spp.) plants characterized by an improved anchored PCR technique. Transgenic Research 15 (2): 139–150; doi: 10.1007/s11248-005-2544-5

Petri C, Alburquerque N, Pérez-Tornero O, Burgos L (2005) Auxin pulses and a synergistic interaction between polyamines and ethylene inhibitors improve adventitious regeneration from apricot leaves and Agrobacterium-mediated transformation of leaf tissues. Plant Cell Tissue and Organ Culture 82 (1): 105–111; doi: 10.1007/s11240-004-7013-y

Ploetz CP, Kepler AK, Daniells J, Nelson SC (2007) Banana and plantain-An overview with emphasis on Pacific islands cultivars. In: Elevitch CR (ed). Species Profiles for Pacific Island Agroforestry, pp. 531-562. Permanent Agriculture Resources, Holualoa; ISBN: 0970254458

Rajeevkumar S, Anunanthini P, Sathishkumar R (2015) Epigenetic silencing in transgenic plants. Frontiers in Plant Science 6 (693); doi: 10.3389/fpls.2015.00693

Robinson JC, Galán V (2010) Bananas and plantains. Crop production science in horticulture. CAB International, Wallingford; ISBN: 978-1-84593-658-7

Roux N, Baurens FC, Dolezel J, Hribova E, Heslop-Harrison P, Town C, Lagoda P (2008) Genomics of banana and plantain (Musa spp.), major staple crops in the tropics. In: Moore PH, Ming R (eds). Genomics of tropical crop plants, pp. 83–111. Springer, New York; ISBN: 978-0-387-71219-2

Sági L, Remy S, Panis B, Swennen R, Volckaert G (1994) Transient gene expression in electroporated banana (Musa spp. cv. Bluggoe, ABB group) protoplasts isolated from regenerable embryogenic cell suspensions. Plant Cell Reports 13 (5): 262–266; doi: 10.1007/BF00233316

Silva TER, Cidade LC, Alvim FC, Cascardo JCM, Costa MGC (2009) Studies on genetic transformation of Theobroma cacao L.: evaluation of different polyamines and antibiotics on somatic embryogenesis and the efficiency of uidA gene transfer by Agrobacterium tumefaciens. Plant Cell Tissue and Organ Culture 99 (3): 287–298; doi: 10.1007/s11240-009-9603-1

Sudhakar C, Veeranagamallaiah G, Nareshkumar A, Sudhakarbabu O, Sivakumar M, Pandurangaiah M, Lokesh U (2015) Polyamine metabolism influences antioxidant defense mechanism in foxtail millet (Setaria italica L.) cultivars with different salinity tolerance. Plant Cell Reports 34 (1): 141-156; doi: 10.1007/s00299-014-1695-3

Vannini C, Marsoni M, Cantara C, Concetta De Pinto M, Locato V, De Gara L, Bracale M (2012) The soluble proteome of tobacco Bright Yellow-2 cells undergoing H2O2-induced programmed cell death. Journal of Experimental Botany 63(8): 3137–3155; doi:10.1093/jxb/ers031

Veena V, Jiang H, Doerge RW, Gelvin SB (2003) Transfer of T-DNA and Vir proteins to plant cells by Agrobacterium tumefaciens induces expression of host genes involved in mediating transformation and suppresses host defense gene expression. Plant Journal 35(2): 219–236; doi: 10.1046/j.1365-313X.2003.01796.x

Zhang W, Dewey R, Boss W, Phillippy BQ, Qu R (2013) Enhanced Agrobacterium-mediated transformation efficiencies in monocot cells is associated with attenuated defense responses. Plant Molecular Biology 81(3): 273–286; doi: 10.1007/s11103-012-9997-8

Zhou X, Wang K, Lv D, Wu C, Li J, Zhao P, Ye X (2013) Global analysis of differentially expressed genes and proteins in the wheat callus infected by Agrobacterium tumefaciens. PLoS One 8: e79390; doi: 10.1371/journal.pone.0079390

Ziemienowicz A, Tzfira T, Hohn B (2008) Mechanisms of T-DNA integration. In: Tzfira T and Citovsky V (eds). Agrobacterium: from biology to biotechnology, pp. 395-440. Springer, New York; ISBN: 978-0-387-72289-4

Zipfel C, Kunze G, Chinchilla D, Caniard A, Jones JD, Boller T, Felix G (2006) Perception of the bacterial PAMP EF-Tu by the receptor EFR restricts Agrobacterium-mediated transformation. Cell 125(4): 749–760; doi: 10.1016/j.cell.2006.03.037




Copyright (c) 2017 Biotecnología Vegetal

Biotecnología Vegetal (https://revista.ibp.co.cu) ISSN 1609-1841, RNPS: 0397 (Versión impresa), ISSN 2074-8647, RNPS: 2154 (Versión electrónica) Editada por: Instituto de Biotecnología de las Plantas. Universidad Central Marta Abreu de Las Villas. Carretera a Camajuaní km 5.5, Santa Clara, Villa Clara, Cuba CP 54 830 Tel: 53 (42) 281257, 281268, 281693 Web: https://www.ibp.co.cu e-mail: info@ibp.co.cu          

Licencia de Creative Commons
Biotecnología vegetal está bajo una Licencia de Creative Commons Reconocimiento 4.0 Internacional.