Estrategias para la selección in vitro de plantas transgénicas de Digitalis L.
Resumen
Las plantas del género Digitalis son reconocidas por sus propiedades medicinales debido a su capacidad para producir cardenólidos, como la digoxina. Estos compuestos son glucósidos cardiotónicos insustituibles para el tratamiento de enfermedades cardiovasculares. Además, ha adquirido valor agregado debido a su aplicación potencial en el tratamiento de varios tipos de cáncer. La ingeniería metabólica es una prometedora herramienta biotecnológica para incrementar la biosíntesis de cardenólidos in vitro. Dentro del proceso de transformación genética la diferenciación de las plantas transformadas, es un paso clave para alcanzar su eficiencia. El objetivo de esta revisión fue sintetizar los principales aspectos a tener en cuenta para realizar un esquema de selección eficiente en este género. Incluye un compendio de las características de los genes marcadores de selección más utilizados, los principios para la selección de eventos transgénicos, un análisis de los agentes selectivos empleados en el género y su eficacia en la transformación genética. Finalmente, se exponen las perspectivas de investigación en el tema.
Palabras clave: antibiótico, cardenólidos, genes marcadores de selección, hpt, npt II
Palabras clave
Referencias
Bevan MW, Flavell RB, Chilton M-D (1983) A chimaeric antibiotic resistance gene as a selectable marker for plant cell transformation. Nature 304(5922): 184-187
Blochlinger K, Diggelmann H (1984) Hygromycin B phosphotransferase as a selectable marker for DNA transfer experiments with higher eucaryotic cells. Mol Cell Biol 4(12): 2929-31
Breyer D, Kopertekh L, Reheul D (2014) Alternatives to Antibiotic Resistance Marker Genes for In Vitro Selection of Genetically Modified Plants – Scientific Developments, Current Use, Operational Access and Biosafety Considerations. Critical Reviews in Plant Sciences 33(4): 286-330; doi:10.1080/07352689.2013.870422
Chong-Pérez B, Angenon G (2013) Strategies for Generating Marker-Free Transgenic Plants. En: Sithole-Niang I (Ed). Genetic Engineering, pp. 1-32. In Tech Publishing, Croacia
Chong-Pérez B, Kosky RG, Reyes M, Rojas L, Ocaña B, Tejeda M, Pérez B, Angenon G (2012) Heat shock induced excision of selectable marker genes in transgenic banana by the Cre-lox site-specific recombination system. Journal of Biotechnology 159(4): 265-273; doi:10.1016/j.jbiotec.2011.07.031
Chong-Pérez B, Pérez-Alonso N, Occeguera Z, Pérez-Capote A, Anabel P-P, Jiménez E (2008) Determinación de la concentración mínima inhibitoria de Geneticina G418 en el proceso de formación de callos de Digitalis purpurea L.. Biotecnología vegetal 8(2): 115-118
David B, Wolfender J-L, Dias DA (2015) The pharmaceutical industry and natural products: historical status and new trends. Phytochemistry Reviews 14(2): 299-315
de Oliveira MLP, Stover E, Thomson JG (2015) The codA gene as a negative selection marker in Citrus. SpringerPlus 4(1): 264-270; doi:10.1186/s40064-015-1047-y
Deliolanis NC, Ale A, Morscher S, Burton NC, Schaefer K, Radrich K, Razansky D, Ntziachristos V (2014) Deep-tissue reporter-gene imaging with fluorescence and optoacoustic tomography: a performance overview. Molecular imaging and biology 16(5): 652-660
Fraley RT, Rogers SG, Horsch RB, Sanders PR, Flick JS, Adams SP, Bittner ML (1983) Expression of bacterial genes in plant cells. Proceedings of the National Academy of Sciences 80(15): 4803-4807
Gallie DR, Lucas WJ, Walbot V (1989) Visualizing mRNA expression in plant protoplasts: factors influencing efficient mRNA uptake and translation. The Plant cell 1(3): 301-311
Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Experimental Cell Research 50(1): 151-158
Hanana M, Ayadi R, Mzid R, Khouja ML, Hanachi AS, Hamrouni L (2018) Efficient method of seed transformation via Agrobacterium tumefaciens for obtaining transgenic plants of Hibiscus cannabinus L.. Industrial Crops and Products 113(1): 274–282; doi:10.1016/j.indcrop.2018.01.050
Helmer G, Casadaban M, Bevan M, Kayes L, Chilton MD (1984) A new chimeric gene as a marker for plant transformation: The expression of Escherichia coli β-galactosidase in sunflower and tobacco cells. Bio/Technology 2(6): 520-527
Heron M, Anderson R (2016) Changes in the leading cause of death: Recent patterns in heart disease and cancer mortality. National Center for Health Statistics data brief (254): 1-8
Herrera-Estrella L, Block MD, Messens E, Hernalsteens JP, Montagu M V, Schell J (1983) Chimeric genes as dominant selectable markers in plant cells. The EMBO Journal. 2(6): 987-995
Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. The EMBO journal 6(13): 3901-3907
Joersbo M, Okkels FT (1996) A novel principle for selection of transgenic plant cells: Positive selection. Plant Cell Reports 16(3-4): 219-221
Kairuz E, Pérez-Alonso N, Capote-Pérez A, Pérez-Pérez A, Jiménez E, Chong-Pérez B (2013) Concentración mínima letal de higromicina B en la formación de callos y multiplicación de brotes de Digitalis purpurea L.. Biotecnología Vegetal 13(1): 23-31
Kavita P, Burma PK (2008) A comparative analysis of green fluorescent protein and ß-glucuronidase protein-encoding genes as a reporter system for studying the temporal expression profiles of promoters. Journal of Biosciences 33(3): 337-343; doi:10.1007/s12038-008-0053-4
Kreis W, Muller-Uri F (2013) Cardenolide Aglycone Formation in Digitalis. En: Bach TJ, Rohmer M (Eds). Isoprenoid synthesis in plants and microorganisms: new concepts and experimental approaches, pp. 425-438. Springer Science + Business Media, New York
Lamont KC, Mudge SR, Liu G, Godwin ID (2017) Expression patterns of the native Shrunken-2 promoter in Sorghum bicolor visualised through use of the GFP reporter gene. Plant Cell Reports 36(11): 1689-1700; doi:10.1007/s00299-017-2182-4
Lehmann U, Moldenhauer D, Thomar S, Diettrich B, Luckner M (1995) Regeneration of Plants from Digitalis Lanata Cells Transformed with Agrobacterium tumefaciens Carrying Bacterial Genes Encoding Neomycin Phosphotransferase II and beta-glucuronidase. Journal of Plant Physiology 147(1): 53-57
Li Y, Gao Z, Piao C, Lu K, Wang Z, Cui ML (2014) A stable and efficient Agrobacterium tumefaciens-mediated genetic transformation of the medicinal plant Digitalis purpurea L.. Applied Biochemistry and Biotechnology 172(4): 1807-17; doi:10.1007/s12010-013-0648-6
Majhi BB, Bhosale R, Jawkar S, Veluthambi K (2014) Evaluation of codA, tms2, and ABRIN-A as negative selectable markers in transgenic tobacco and rice. In Vitro Cellular and Developmental Biology - Plant 50(5): 541-551; doi:10.1007/s11627-014-9625-1
Martín R, Chong-Pérez B, Pérez-Alonso N (2015) Organogénesis in vitro en el género Digitalis. Biotecnología Vegetal 15(4):195-206
Mathers CD, Stevens GA, Boerma T, White RA, Tobias MI (2015) Causes of international increases in older age life expectancy. The Lancet 385 (9967): 540-548
Miki B, Abdeen A, Manabe Y, Macdonald P (2009) Selectable marker genes and unintended changes to the plant transcriptome. Plant Biotechnology Journal 7: 211-218; doi:10.1111/j.1467-7652.2009.00400.x
Miki B, McHugh S (2004) Selectable marker genes in transgenic plants: applications, alternatives and biosafety. Journal of biotechnology 107(3): 193-232
Nietsch J, Brügmann T, Becker D, Fladung M (2017) Old methods rediscovered: application and improvement of two direct transformation methods to hybrid poplar (Populus tremula × P. alba). Plant Cell, Tissue and Organ Culture 130(1): 183-196
Osakabe K, Nishizawa-Yokoi A, Ohtsuki N, Osakabe Y, Toki S (2014) A mutated cytosine deaminase gene, codA (D314A), as an efficient negative selection marker for gene targeting in rice. Plant and Cell Physiology 55(3): 658-665; doi:10.1093/pcp/pct183
Padilla IMG, Burgos L (2010) Aminoglycoside antibiotics: Structure, functions and effects on in vitro plant culture and genetic transformation protocols. Plant Cell Reports 29: 1203-1213; doi:10.1007/s00299-010-0900-2
Parveez GKA, Majid NA (2018) Green fluorescent protein as a visual selection marker for oil palm transformation. Industrial Crops and Products 115(2): 134–145; doi:10.1016/j.indcrop.2018.02.016
Pérez-Alonso N, Chong-Pérez B, Capote A, Pérez A, Izquierdo Y, Angenon G, Jiménez E (2014) Agrobacterium tumefaciens-mediated genetic transformation of Digitalis purpurea L.. Plant Biotechnology Reports 8(5): 387-97; doi:10.1007/s11816-014-0329-0
Pérez-Alonso N, Wilken D, Gerth A, Jahn A, Nitzsche, Horst-Michael Kerns G, Capote-Pérez A, Jiménez E (2009) Cardiotonic glycosides from biomass of Digitalis purpurea L. cultured in temporary immersion systems. Plant Cell Tissue and Organ Culture 99(2): 151-156; doi:10.1007/s11240-009-9587-x
Pérez-Alonso NL, Arana LF, Capote PA, Pérez PA, Sosa R, Mollineda A, Jiménez E (2014) Estimulación de cardenólidos en brotes de Digitalis purpurea L. cultivados in vitro mediante elicitores. Revista Colombia de Biotecnologia 16(1): 51-61
Pérez-Alonso NL, Capote A, Gerth A, Jiménez E (2012) Increased cardenolides production by elicitation of Digitalis lanata shoots cultured in temporary immersion systems. Plant Cell Tissue and Organ Culture 110: 153-162; doi:10.1007/s11240-012-0139-4
Pradel H, Dumke-Lehmann U, Diettrich B, Luckner M (1997) Hairy root cultures of Digitalis lanata. Secondary metabolism and plant regeneration. Journal of Plant Physiology 151(2): 209-215
Prasher DC, Eckenrode VK, Ward WW, Prendergast FG, Cormier MJ (1992) Primary structure of the Aequorea victoria green-fluorescent protein. Gene 111(2): 229-33
Ramessar K, Peremarti A, Gómez-Galera S, Naqvi S, Moralejo M, Muñoz P, Capell T, Christou P (2007) Biosafety and risk assessment framework for selectable marker genes in transgenic crop plants: a case of the science not supporting the politics. Transgenic Research 16(3): 261-80; doi:10.1007/s11248-007-9083-1
Roca-Pérez L, Boluda R, Gavidia I, Pérez-Bermúdez P (2004) Seasonal cardenolide production and Dop5βr gene expression in natural populations of Digitalis obscura. Phytochemistry 65(13): 1869-78; doi:10.1016/j.phytochem.2004.05.004
Rosellini D (2011) Selectable marker genes from plants: Reliability and potential. In Vitro Cellular and Developmental Biology - Plant 47(2): 222-33; doi:10.1007/s11627-011-9348-5
Rosellini D (2012) Selectable Markers and Reporter Genes: A Well Furnished Toolbox for Plant Science and Genetic Engineering. Critical Reviews in Plant Sciences 31(5): 401-453; doi:10.1080/07352689.2012.683373
Saito K, Yamazaki M, Kaneko H, Murakoshi I, Fukuda Y, Van Montagu M (1991) Tissue-specific and stress-enhancing expression of the TR promoter for mannopine synthase in transgenic medicinal plants. Planta 184(1): 40-46
Saito K, Yamazaki M, Shimomura K, Yoshimatsu K, Murakoshi I (1990) Genetic transformation of foxglove (Digitalis purpurea) by chimeric foreign genes and production of cardioactive glycosides. Plant Cell Reports 9: 121-124
Sales E, Frieder M, Nebauer SG, Segura J, Kreis W, Arrillaga I (2011) Digitalis. En: Kole C (Ed). Wild Crop Relatives: Genomic and Breeding Resources, Plantation and Ornamental Crops, pp. 73-112. Heidelberg Springer-Verlag, Berlin
Sales E, Muñoz-Bertomeu J, Arrillaga I, Segura J (2007) Enhancement of Cardenolide and Phytosterol Levels by Expression of an N-Terminally Truncated 3-Hydroxy-3-methylglutaryl CoA Reductase in Transgenic Digitalis minor. Planta Medica 73(6): 605-610; doi:10.1055/s-2007-967199
Sales E, Nebauer SG, Arrillaga I, Segura J (2002) Plant hormones and Agrobacterium tumefaciens strain 82.139 induce efficient plant regeneration in the cardenolide-producing plant Digitalis minor. Journal of Plant Physiology 159(1): 9-16; doi:10.1078/0176-1617-00534
Sales E, Segura J, Arrillaga I (2003) Agrobacterium tumefaciens-Mediated Genetic Transformation of the Cardenolide-Producing Plant Digitalis minor L.. Planta Medica 69: 143-147
Shaner NC, Steinbach PA, Tsien RY (2005) A guide to choosing fluorescent proteins. Nature Methods 2(12): 905-9
Sheen J, Hwang S, Niwa Y, Kobayashi H, Galbraith DW (1995) Green‐fluorescent protein as a new vital marker in plant cells. The Plant Journal 8(5): 777-784
Stuhlemmer U, Kreis W (1996) Cardenolide formation and activity of pregnane-modifying enzymes in cell suspension cultures, shoot cultures and leaves of Digitalis lanata. Plant Physiology and Biochemistry 34(1): 85-91
Suzman R, Beard JR, Boerma T, Chatterji S (2015) Health in an ageing world - What do we know?. The Lancet 385(9967): 484-486; doi:10.1016/S0140-6736(14)61597-X
Verma SK, Das AK, Cingoz GS, Gurel E (2016) In vitro culture of Digitalis L. (Foxglove) and the production of cardenolides: An up-to-date review. Industrial Crops and Products 94: 20-51; doi:10.1016/j.indcrop.2016.08.031
Wakasa Y, Ozawa K, Takaiwa F (2007) Agrobacterium-mediated transformation of a low glutelin mutant of “Koshihikari” rice variety using the mutated-acetolactate synthase gene derived from rice genome as a selectable marker. Plant Cell Reports 26(9): 1567–1573; doi:10.1007/s00299-007-0373-0
Ziff OJ, Lane DA, Samra M, Griffith M, Kirchhof P, Lip GYH, Steeds RP, Townend J, Kotecha D (2015) Safety and efficacy of digoxin: systematic review and meta-analysis of observational and controlled trial data. BMJ (Clinical research ed) 351:h4451; doi:10.1136/bmj.h4451
Copyright (c) 2018 Biotecnología Vegetal
Biotecnología Vegetal eISSN 2074-8647, RNPS: 2154. ISSN 1609-1841, RNPS: 0397 Editada por: Instituto de Biotecnología de las Plantas. Universidad Central Marta Abreu de Las Villas. Carretera a Camajuaní km 5.5, Santa Clara, Villa Clara, Cuba CP 54 830 Tel: 53 42200124, e-mail: info@ibp.co.cu
Biotecnología Vegetal está bajo una Licencia Creative Commons Atribución-NoComercial 4.0 Internacional.