Potencial de Bacillus pumilus Bp4185 y Bacillus thuringiensis Bt3971 para el biocontrol de la broca del café

Dainette Vazquez, Mildred Zapata, Carlos Bolaños

Resumen


La broca del café (Hypothenemus hampei) es un de las plagas principales del cultivo y efecta su producción a nivel mundial. El insecto crece y se reproduce dentro de la fruta y reduce su peso y calidad, lo que causa pérdidas hasta del 50%. Algunas cepas del género Bacillus contienen plásmidos con genes del tipo cry y cyt que codifican por proteínas tóxicas a insectos. Bacillus thuringiensis y Bacillus pumilus se han evaluado como entomopatógenas. Este estudio tuvo como objetivo determinar el potencial de Bacillus thuringiensis Bt3971 y Bacillus pumilus Bp4185 para el biocontrol de  H. hampei. La presencia de plásmidos de 12 kbp fue confirmada en ambas cepas, así como una proteína de 116 kDa potencialmente entomopatógena en Bt3971. Después de 48 h de tratamiento, Bt3971 ocasionó 55% de mortalidad (A590=0.8, aproximadamente 1010 UFC ml-1) y 82% a las 72 h en la población de insectos.  Bp4185 a las 72 h produjo 55% de mortalidad (A590=1.0, aproximadamente 1012 UFC ml-1) y 46% a las 96 horas (A590=0.8). Ambas cepas nativas, adaptadas a las condiciones ambientales de Puerto Rico, tienen potencial para el control biológico de la broca del café.


Palabras clave


cry1A, Hypothenemus hampei, plásmidos, toxicidad

Texto completo:

PDF (English) HTML (English)

Referencias


Abbott WS (1925) A method of computing the effectiveness of an insecticide. J Econ Entomol 18(2): 265-267; doi: 10.1093/jee/18.2.265a

Ben-Dov E, Manasherob R, Zaritsky A, Barak Z, Margalith Y (2001) PCR analysis of cry7 genes in Bacillus thuringiensis by five conserved blocks of toxins. Current Microbiol 42: 96-99; doi: 10.1007/s0028403336

Brar SK, Verma M, Tyagi RD, Surampalli RY, Barnabé S, Valéro JR (2007) Bacillus thuringiensis proteases: production and role in growth, sporulation and synergism. Process Biochemistry 42(5): 773-790

Bravo AS, Sarabia L, López, Otiveros H, Abarca C, Ortíz A, Lina L, Quintero R (1998) Characterization of cry genes in a Mexican Bacillus thuringiensis strain collection. Appl Environ Microbiol 64(12): 4965-4972; doi: 10.1128/AEM.64.12.4965-4972.1998

Bravo AS, Gill SS, Soberón M (2007) Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control. Toxicon 49: 423–435; doi: 10.1016/j.toxicon.2006.11.022

Damon A (2000) A review of the biology and control of the coffee berry borer, Hypothenemus hampei (Coleoptera: Scolytidae). Bull Entomol Res 90(6): 453-465; doi: 10.1017/S0007485300000584

De la Rosa W, Figueroa M, Ibarra JE (2005) Selection of Bacillus thuringiensis strains native to Mexico active against the coffee berry borer, Hypothenemus hampei (Ferrari). Vedalia 12(1): 3-9

Donovan WP, Rupar MJ, Slaney AC, Malvar T, Gawron-Burke MC, Johnson TB (1992) Characterization of two genes encoding Bacillus thuringiensis insecticidal crystal proteins toxic to Coleopteran species. Appl Environ Microbiol 58(12): 3921-3927

EPA (2014) Environmental Protection Agency of the US Office of Pesticide Programs Biopesticides and Pollution Prevention Division, Biopesticides registration action document. Preliminary Risks and Benefits Sections Bacillus thuringiensis Plant-Pesticides. Available in: https://archive.epa.gov/scipoly/sap/meetings/web/pdf/brad1_execsum_overview.pdf. Accessed 23/05/2014

Gallardo F, González O (2015) Manejo Integrado de la Broca del Café en Puerto Rico, Guía Técnica. Departamento de Agricultura, San Juan

Heins SD, Manker DC, Jimenez DR, Marrone PG (1999) Bacillus pumilus strain for controlling corn rootworm, nematode and armyworm infestations. US Patent No 6001637. Washington

Jouzani GS, Valijanian E, Sharafi R (2017) Bacillus thuringiensis: a successful insecticide with new environmental features and tidings. Appl Microbiol Biotechnol 101: 2691–2711

Khorramnejad A, Talaei-Hassanloui R, Hosseininaveh V (2018) Characterization of new Bacillus thuringiensis strains from Iran, based on cytocidal and insecticidal activity, proteomic analysis and gene content. BioControl 63: 807-818; doi: 10.1007/s10526-018-9901-9

Knowles BH (1994) Mechanism of action of Bacillus thuringiensis insecticidal δ-endotoxins. Advances in insect physiology 24: 275-308; doi: 10.1016/S0065-2806(08)60085-5

Krieg A, Huger AM, Langenbruch GA, Schnetter W (1983) Bacillus thuringiensis var. tenebrionis, a new pathotype effective against larvae of Coleoptera. Zeitschrift für angewandte Entomologie (96): 500-508; doi: 10.1111/j.1439-0418.1983.tb03704.x

Lereclus D, Lecadet MM, Ribier J, Dedonder R (1982) Molecular relationships among plasmids of Bacillus thuringiensis: conserved sequences through 11 crystalliferous strains. Mol Gen Genet 186: 391-398; doi: 10.1007/BF00729459

Li X, Wang Y, Brown CJ, Yao F, Jiang Y, Top EM, Li H (2016) Diversification of broad host range plasmids correlates with the presence of antibiotic resistance genes. FEMS microbiology ecology 92(1): 151; doi: 10.1093/femsec/fiv151

Logan A, De Vos P (2009) Bergey’s Manual Trust, Bergey’s Manual of Systematics of Archaea and Bacteria, Genus Bacillus. John Wiley & Sons Inc, New York

López-Pazos SA, Gómez JEC, Cerón-Salamanca JA (2009) Cry1B and Cry3A are active against Hypothenemus hampei Ferrari (Coleoptera: Scolytidae). J Invertebr Pathol 101: 242-245

McLean KM, Whiteley HR (1987) Expression in Escherichia coli of a cloned crystal protein gene of Bacillus thuringiensis subsp. israelensis. J Bacteriol 169(3): 1017-1023. doi: 10.1128/jb.169.3.1017-1023.1987

Méndez-López I, Basurto-Ríos R, Ibarra JE (2003) Bacillus thuringiensis serovar israelensis is highly toxic to the coffee berry borer Hypothenemus hampei Ferr. (Coleoptera: Scolytidae). FEMS Microbiol Lett 226: 73-77

Molina CA, Caña Roca JF, Osuna A, Vilchez S (2010) Selection of Bacillus pumilus strain highly active against Ceratitis capitata (Wiedemann) larvae. App Environ Microbiol 76(5): 1320-1327; doi: 10.1128/AEM.01624-09

Norman A, Hansen LH, Sørensen SJ (2009) Conjugative plasmids: vessels of the communal gene pool. Philos Trans R Soc Lond B Biol Sci 364(1527): 2275-2289; doi: 10.1098/rstb.2009.0037

Ohba M, Iwahana H, Asano S, Suzuki N, Sato R, Hori H (1992) A unique isolate of Bacillus thuringiensis serovar japonensis with a high larvicidal activity specific for scarabaeid beetles. Lett App Microbiol 14(2): 54-57; doi: 10.1111/j.1472-765X.1992.tb00646.x

Palma L, Muñoz D, Berry C, Murillo J, Caballero P (2014) Bacillus thuringiensis Toxins: An Overview of TheirBiocidal Activity. Toxins 6: 3296-3325

Pardo-López L, Soberón M, Bravo A (2013) Bacillus thuringiensis insecticidal three-domain Cry toxins: Mode of action, insect resistance and consequences for crop protection. FEMS Microbiol Rev 37: 3–22

Rahardja U, Whalon ME (1995) Inheritance of resistance to Bacillus thuringiensis subsp. tenebrionis CryIIIA δ-endotoxin in Colorado potato beetle (Coleoptera: Chrysomelidae). J Econ Entomol 88(1): 21-26; doi: 10.1093/jee/88.1.21

Ramarathnam RS, Bo Y, Chen W, Fernando G, Xuewen G, de Kievit T (2007)Molecular and biochemical detection of fengycin- and bacillomycin D-producing Bacillus spp., antagonistic to fungal pathogens of canola and wheat. Can J Microbiology 53(7): 901-11; doi: 10.1139/W07-049

Snyder L, Champness W (2007) Molecular genetics of bacteria (No. 572.8 S6M6 2007). Asm Press, Washington DC

Snustad PD, Simmons MJ (2006) Principles of Genetics: The Genetics of Bacteria. John Wiley and Sons Inc, Hoboken

Sørensen SJ, Bailey M, Hansen LH, Kroer N, Wuertz S (2005) Studying plasmid horizontal transfer in situ: a critical review. Nature Rev Microbiol 3(9): 700; doi: 10.1038/nrmicro1232

Yaman M, Aslan I (2010) Isolation of some pathogenic bacteria from the great spruce bark beetle, Dendroctonus micans and its specific predator, Rhizophagus grandis. Folia Microbiol 55(1): 35-38; doi: 10.1007/s12223-010-0006-9

Zhang Z, Tian W, Liu D, Liu Y, Shen Q, Shen B (2010) Characterization of a cryptic plasmid pPZZ84 from Bacillus pumilus. Plasmid 6(3): 200-203; doi: 10.1016/j.plasmid.2010.06.006

Zorzetti J, Scaramal AP, Pires FA, Meneghin AM, Oliveira PM, Vilas-Boas LA, Vilas-Boas GT (2018) Isolation, morphological and molecular characterization of Bacillus thuringiensis strains against Hypothenemus hampei Ferrari (Coleoptera: Curculionidae: Scolytinae). Revista Brasileira de Entomologia 62: 198–204




Copyright (c) 2021 Biotecnología Vegetal

Biotecnología Vegetal eISSN 2074-8647, RNPS: 2154. ISSN 1609-1841, RNPS: 0397 Editada por: Instituto de Biotecnología de las Plantas. Universidad Central Marta Abreu de Las Villas. Carretera a Camajuaní km 5.5, Santa Clara, Villa Clara, Cuba CP 54 830 Tel: 53 42200124, e-mail: info@ibp.co.cu

Licencia Creative Commons
Biotecnología Vegetal
está bajo una Licencia Creative Commons Atribución-NoComercial 4.0 Internacional.