Efecto de una combinación indígena de AM y PGPR sobre el crecimiento y la productividad de chiles en suelos lateríticos

Debashis Kuila, Bijoy Mal, Sudip Mondal, Somdatta Ghosh, Gunjan Biswas

Resumen


El suelo laterítico infértil es particularmente deficiente en fósforo (P) y nitrógeno (N). Las micorrizas arbusculares (AM) tiene un papel clave para absorber el P unido del suelo y proporcionar a las plantas que crecen en condiciones de P pobre y mejorar la absorción de agua y nutrientes. Azotobacter que fija el nitrógeno libre y las bacterias solubilizadoras de fosfato (PSB), son grupos importantes de rizobacterias que promueven el crecimiento de las plantas (PGPR). A veces pueden actuar de conjunto con micorrizas y aplicarse con AM como biofertilizante. Este experimento en maceta se realizó para determinar el impacto primario de la aplicación individual y combinada de bio-inoculantes nativos, AM Acaulospora y PGPR Azotobacter y Pseudomonas sp. (PSB) sobre el crecimiento y el rendimiento del chile (Capsicum frutescens L.), que crece en suelo ácido laterítico. Los tratamientos inoculados se compararon para el crecimiento y la productividad del chile en términos de altura, número de hojas, área foliar, diámetro de raíz, número de flores, número de frutos, rendimiento final fresco y seco. La productividad de los chiles mostró un máximo en el tratamiento combinado de Acaulospora, Azotobacter y PSB. También el recuento de esporas de AM y la colonización de raíces encontraron el máximo en ese tratamiento. De ahí la aplicación de la inoculación de AM indígena junto con PGPR nativo, Azotobacter y PSB pueden presentar una mejor productividad en suelos lateríticos de baja fertilidad.

Palabras clave


Acaulospora, Azotobacter, suelo infértil, micorriza, PSB

Texto completo:

PDF (English) HTML (English)

Referencias


Akib MA, Mustari K, Kuswinanti T, Syaiful SA, (2018) Identification and abundance of indigenous endomycorrhiza isolated from nickel post-mining plantation in Sorowako. Int J Curr Res Biosci Plant Biol 5(4): 8-16; doi: 10.20546/ijcrbp.2018.504.002

Almas AR, Bakken LR, Mulder J (2004) Changes in tolerance of soil microbial communities in Zn and Cd contaminated soils. Soil Biol Biochem 36(5): 805-813

Andrade G (2004) Role of functional groups of microorganisms on the rhizosphere microcosm dynamics. In: Varma A, Abbott L, Werne D, Hampp R (eds). Plant Surface Microbiology, pp. 51-68. NY Springer, New York

APEDA (2019) Agri Exchange, Agricultural & Processed Food Products Export Development Authority, Ministry of Commerce and industry, government of India.

Artursson V, Finlay RD, Jansson JK (2006) Interactions between arbuscular mycorrhizal fungi and bacteria and their potential for stimulating plant growth. Environmental Microbiology 8: 1-10

Aúge RM (2001) Water relations, drought and vesicular – arbuscular mycorrhizal symbiosis. Mycorrhiza 11: 3-42

Avio L, Pellegrino E, Bonari E, Giovannetti M (2006) Functional diversity of arbuscular mycorrhizal fungal isolates in relation to extraradical mycelial networks. New Phytologist 172: 347-357; doi: 10.1111/j.1469-8137.2006.01839.x

Bagyaraj DJ, Sreeramulu KR (1982) Preinoculation with VA mycorrhiza improves growth and yield of chilli transplanted in the field and saves phosphatic fertilizer. Plant Soil 69: 375-381

Bagyaraj DJ (1984) Biological interactions with VA mycorrhizal fungi. In: Powell CL, Bagyaraj DJ (eds). VA Mycorrhiza, pp. 131-154. CRC Press, Florida

Begum N, Qin C, Ahanger MA, Raza S, Khan MI, Ashraf M, Ahmed N, Zhang L (2019) Role of Arbuscular Mycorrhizal Fungi in Plant Growth Regulation: Implications in Abiotic Stress Tolerance. Front Plant Sci 10: 1068; doi: 10.3389/fpls.2019.01068

Bethlenfalvay GJ, Brown MS, Ames RN, Thomas RS (1988) Effects of drought on host and endophyte development in mycorrhizal Soyabeans in relation to water use and phosphate uptake. Plant Physiol 72: 565-571

Bhattacharyya P, Jain RK (2000) Phosphorus solubilizing biofertilizers in the whirlpool of rock phosphate-challenges and opportunities. Fertilizer News 45: 45-52

Bhuvaneswari G, Reetha S, Sivaranjani R, Ramakrishnan K (2014) Effect of AM fungi and Trichoderma species as stimulations of growth and morphological character of chilli (Capsicum annuum .L). International Journal of Current Microbiology and Applied Science 3(3): 447-455

Bosland PW, Votava EJ (2000) Peppers: Vegetable and spice capsicums. CABI Publishing, Oxon

Bowen GD (1973) Mineral nutrition in mycorrhizas. In: Marks GC, Kozlowski TT (eds). Ectomycorrhizae, pp. 151-201. Academic Press, New York

Brundrett MC (2009) Mycorrhizal associations and other means of nutrition of vascular plants: understanding the global diversity of host plants by resolving conflicting information and developing reliable means of diagnosis. Plant Soil 320: 1-41

Brundrett MC (2002) Coevolution of roots and mycorrhizas of land plants. New Phytol 154: 275-304

Bucher M (2007) Functional biology of plant phosphate uptake at root and mycorrhiza interfaces. New Phytol 173: 11-26

Burla M, Goverde M, Schwinn FJ, Wiemken A (1996) Influence of biocontrol organisms on root pathogenic fungi and on the plant symbiotic microorganisms Rhizobium phaseoli and Glomus mosseae. J Plant Dis Prot 103: 156-163

Chalot M, Blaudez D, Brun A (2006) Ammonia: a candidate for nitrogen transfer at the mycorrhizal interface. Tren Plant Sci 11: 263-266

Chukwuka KS, Okechukwu RU, Umukoro BO (2017) Arbuscular mycorrhiza fungi, NPK (15-15-15) and cow dung interaction in sustainable cassava production and food security. Adv Plants Agric Res 7(4): 328-335; doi: 10.15406/apar.2017.07.00262

Clark RB (1997) Arbuscular mycorrhizal adaptation, spore germination root colonization and lost. Plant Soil 192(1): 15-22

Dal C, Barion G, Ferrari M, Visioli G, Dramis L, Panozzo A, Vamerali T (2018) Effects of field inoculation with VAM and bacteria consortia on root growth and nutrients uptake in common wheat. Sustainability 10: 3286; doi: 10.3390/su10093286

Douds DD, Nagahashi G, Pfeffer PE, Kayser WM, Reider C (2005) On-farm production and utilization of arbuscular mycorrhizal fungus inoculum. Can J Plant Sci 85: 15-21

Entry JA, Rygiewiez PT, Watrud LS, Donelly PK (2002) Influence of adverse soil condition on the formation and functioning of arbuscular mycorrhizas. Adv Environ Res 7: 123-138

FAOSTAT (2017) Chili production in 2016, Crops-World Regions-Production Quantity-Green Chillies and Peppers from pick lists, UN Food and Agriculture Organization, Statistics Division

Fomina MA, Alexander IJ, Colpaert JV, Gadd GM (2005) Solubilization of toxic metal minerals and metal tolerance of mycorrhizal fungi. Soil Biology and Biochemistry 37: 297-299

Frank AB (1885) Ueher die aug warzel symbiose beruhende, Ernahrung gewisser Baume durch Unterirdische Plize Ber Dtsch Bot Ges 3: 128-145

Gaur A, Adholeya A, Mukerji KG (1998) A comparison of AM fungi inoculants using Capsicum and Polianthes in marginal soil amended with organic matter. Mycorrhiza 7(6): 307-312

Gerdermann JW, Nicolson TH (1963) Spores of mycorrhizal endogone species extracted from soil by wet sieving and decanting. Transactions of the British Mycological Society 46: 235-244

Ghosh S, Verma NK (2006) Growth and mycorrhizal dependency of Acacia mangium Willd. inoculated with three vesicular arbuscular mycorrhizal fungi in lateritic soil. New Forests 31: 75-81

Ghosh S, Verma NK (2011) Impact of rhizospheric conditions on AM diversity, succession, and colonization in two plantations of Acacia auriculiformis and Eucalitptus tereticornis. Mycorrhiza News 22(4): 5-7

Ghosh S, Knap UK, Verma NK (2008) Effect of four arbuscular mycorrhizae on Acacia mangium Wild. Seedlings in lateritic soil. Indian J Plant Physiol 13(4): 375-380

Giri B, Giang PH, Kumari R, Prasad R, Varma A (2005) Microorganisms in soils: roles in genesis and functions. In: Buscotand F, Varma A (eds). Soil Biology, pp. 19-43. NY Springer-Verlag, New York

Hashem A, Abd Allah EF, Alqarawi AA, Al-Huqail AA, Wirth S, Egamberdieva D (2016) The interaction between arbuscular mycorrhizal fungi and endophytic bacteria enhances plant growth of Acacia gerrardi under salt stress. Front Microbiol 7: 1089; doi: 10.3389/fmicb.2016.01089

Hempel S, Hötzenberger L, Kühn I, Michalski SG, Rillig MC, Zobel M, Moora M (2013) Mycorrhizas in the Central European Flora: relationships with plant life history traits and ecology. Ecology 94: 1389-1399

Hodge A, Campbell CD, Fitter AH (2001) An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material. Nature 413: 297–299

Holt JG, Krieg NR (1984) Bergey’s Manual of Systematic Bacteriology. Wiliams and Wilkins, Baltimore

INVAM (2018) Classification, International Culture Collection of Vesicular Arbuscular Mycorrhizal Fungi.

Jackson ML (1973) Soil chemical analyses, Prentice Hall, New Delhi

Johansen A, Jakobsen I, Jensen ES (1993) Hyphal N transport by a vesicular–arbuscular mycorrhizal fungus associated with cucumber grown at three nitrogen levels. Plant and Soil 160: 1-9; doi: 10.1007/BF00150340

Kapoor R, Sharma D, Bhatnagar AK (2008) Arbuscular mycorrhizae in micropropagation systems and their potential applications. Sci Hortic 116: 227-239

Kayama M, Yamanaka T (2014) Growth characteristics of ectomycorrhizal seedlings of Quercus glauca, Quercus salicina and Castanopsis cuspidata planted on acidic soil. Trees 28: 569-583; doi: 10.1007/s00468-013-0973-y

Khiari L, Parent V (2002) Phosphorus transformations in acid light-textured soils treated with dry swine manure. Canad J Microbiol 85: 75-87

Kirk PM, Cannon PF, David JC, Stalfers JA (2001) Ainswrth and Bisby's Dictionary of the fungi, (9th ed). CAB International, Wallingford, UK

Koley AK (2000) Basic concepts of soil science. New age international publishers, India

Kottke I (2002) Mycorrhizae-rhizosphere determinants of plant communities. In: Waisel Y, Eshel A, Kafkafi U (eds). Plant Roots, the hidden half (3rd ed), pp. 919-932. Marcel Dekker, New York

Krieg NR, Holt JG, Sneath PHA, Staley JT, Williams ST (1994) Bergey’s Manual of Determinative Bacteriology, (9th ed). Williams & Wilkins, Baltimore

Kumar V, Aggarwal NK, Singh BP (2000) Influence of P- solubilizing analogue resistant mutants of Azotobacter chroococcum on yield and quality parameters of Helianthus annus. Folia Microbiologica 45: 347-352

Kumar V, Solanki AS, Sharma S (2009) Yield and economics of Withania somnifera influenced by dual inoculation of Azotobacter chroococcum and Pseudomonas putida. Turkish Journal of Biology 33: 219-223

Lallawmkima I, Singh SK, Sharma M (2018) Application of Azotobacter, Vesicular Arbuscular Mycorrhiza and Phosphate Solubilizing Bacteria for potato cultivation in Central Plain Zone (Pb-3) of Punjab. Journal of Environmental Biology 39: 985-989; doi: 10.22438/jeb/39/6/MRN-463

Li XL, George E, Marschiner H (1991) Extension of the phosphorus depletion zone in VA – mycorrhizal white clover in calcareous soil. Plant soil 136(1): 41-48

Madder P, Vierheileg H, Boller T, Streitwalf B, Engle Freg P Chritie, Wietnken A (2000) Transport of 15N from a soil compartment separated by a polytetraflouroethylene membrane to plant roots via the hyphae of arbuscular mycorrhizal fungi. New Phytologist 146: 155-161

Madhusudhan L (2016) Organic Farming-Ecofriendly Agriculture. J Ecosys Ecograph 6: 209; doi: 10.4172/2157-7625.1000209

Malik BS, Paul S, Ahlawat AK, Singh AM, Shivay YS (2009) Productivity and quality of wheat spp. grown with different fertilization condition. Indian Journal of Agricultural Sciences 79: 636-40

Mardukhi B, Rejali F, Daei G, Ardakani Md R, Malakouti Md J, Miransari Md (2011) Arbuscular mycorrhizas enhance nutrient uptake in different wheat genotypes at high salinity levels under field and greenhouse conditions. Comptes Rendus Biologies 334(7): 564-571; doi: 10.1016/j.crvi.2011.05.001

Mishra RR, Verma NK (1982) Effect of different mycorrhizal treatments on the growth of onion. Acta Botanica India 11: 49-52

Mittal S, Kaur G, Vishwakarma G (2013) Effects of Environmental Pesticides on the Health of Rural Communities in the Malwa Region of Punjab, India: A Review. Human and Ecological Risk Assessment An International Journal 20: 366-387; doi: 10.1080/10807039.2013.788972

Mosse B (1973) Advances in the study of vesicular arbuscular mycorrhiza. Ann Rev Phytopath 11: 171-196

Muthukumar T, Priyadharsini P, Uma E, Jaison S, Pandey RR (2014) Role of arbuscular mycorrhizal fungi in alleviation of acidity stress on plant growth. In: Miransari Md (ed). Use of Microbes for the Alleviation of Soil Stresses, pp. 43-72. Springer, New York

Nadeem SM, Ahmad M, Zahir ZA, Javaid A, Ashraf M (2014) The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments. Biotechnol Adv 32: 429-448; doi: 10.1016/j.biotechadv.2013.12.005

Nuccio EE, Hodge A, Pett-Ridge J, Herman DJ, Weber PK, Firestone MK (2013) An arbuscular mycorrhizal fungus significantly modifies the soil bacterial community and nitrogen cycling during litter decomposition. Environmental Microbiology 15: 1870-1881; doi: 10.1111/1462-2920.12081

Oliveira RS, Vosatka M, Dodd JC, Castro PML (2005) Studies on the diversity of arbuscular mycorrhizal fungi and the efficacy of two native isolates in highly alkaline anthropogenic sediment. Mycorrhiza 16: 23-31

Oyetunji OJ, Ekanayeke IJ, Osonubi O (2003) The influence of arbuscular mycorrhizae fungus, mulch and fertilizer application on the yield of yams in an agroforestry system in south western Nigeria. Maurik Bull 6: 75-82

Pandey J, Singh A (2012) Opportunities and constraints in organic farming: An Indian perspective. Journal of Scientific Research Banaras Hindu University 56: 47-72

Paul S, Singh R, Tyagi M (2011) Interactive effect with AM fungi and Azotobacter inoculated seed on germination, plant growth and yield in cotton (Gossypium hirsutum). Indian Journal of Agricultural Sciences 81(11): 1041-55

Pelczar MJ, Bard RC, Burnett GW, Conn HJ, Demoss RD, Euans EE, Weiss FA, Jennison MW, Meckee AP, Riker AJ, Warren J, Weeks OB (1957) Manual of microbiological methods. Society of American Bacteriology McGraw Hill Book Company Inc, New York

Phillips JM, Hayman DS (1970) Improved procedure for clearing roots and staining parasitic and vesicular arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Br Mycol Soc 55: 158-161

Pikovskaya RI (1948) Mobilization in phosphate in soil in concentration with vital activities of some microbial species. Microbiologya 17: 362-370

Ponmurugan P, Gopi C (2006) In vitro production of growth regulators and phosphate activity by phosphate solubilizing bacteria. African J Biotechnol 5: 348-350

Püschel D, Bitterlich M, Rydlová J (2020) Facilitation of plant water uptake by an arbuscular mycorrhizal fungus: a Gordian knot of roots and hyphae. Mycorrhiza 30: 299-313; doi: 10.1007/s00572-020-00949-9

Raklami A, Bechtaoui N, Tahiri AI, Anli M, Meddich A, Oufdou K, (2019) Use of Rhizobacteria and Mycorrhizae Consortium in the Open Field as a Strategy for Improving Crop Nutrition, Productivity and Soil Fertility. Front Microbiol 10: 1106; doi: 10.3389/fmicb.2019.01106

Rahman KM, Debnath SC (2015) Agrochemical use, environmental and health hazards in Bangladesh. International Research Journal of Interdisciplinary & Multidisciplinary Studies 1: 75-79

Reddy PS, Rao TVSS, Venkatramana P, Suryanarayaana N (2003) Response of mulberry varieties to VAM and Azotobacter biofertilizers inoculation. Indian J Plant Physiol 8(2): 171-174

Redecker D, Morton JB, Bruns TD (2000) Ancestral lineages of arbuscular mycorrhizal fungi (Glomales). Mol Phylogen Evol 14: 276-284

Robinson L, Feng W, Gulbis N, Hajdu K, Harrison RJ, Jeffries P, Xu X (2016) The Use of Arbuscular Mycorrhizal Fungi to Improve Strawberry Production in Coir Substrate. Front Plant Sci 7: 1237; doi: 10.3389/fpls.2016.01237

Rouphael Y, Franken P, Schneider C, Schwarz D, Giovannetti M, Agnolucci M (2015) Arbuscular mycorrhizal fungi act as bio-stimulants in horticultural crops. Sci Hort 196: 91-108; doi: 10.1016/j.scienta.2015.09.002

Samanta S, Verma NK (2006) Effect of VA mycorrhiza on the growth and protein content in fruits of Capsicum annuum grown in acid lateritic soil. J Mycopathol Res 44(2): 197-200

Saxena J, Sharma V (2003) Phosphate solubilizing activity of microbes and their role as biofertilizer. In: Trivedi PC (ed). Advances in Microbiology, pp. 59-73. Scientific Publ, Jodhpur

Schenck NC, Perez Y (1990) Manual for the identification of VA mycorrhizal fungi (INVAM) (3rd ed). University of Florida, Gainesville

Schüßler A, Schwarziff D, Walker C (2001) A new fungal phylum, the Glomeromycota: Phylogeny and evolution. Mycological Research 105: 1413-1421

Selvakumar G, Chandrasekaran M, Charlotte S, Kiyoon K, Tongmin S (2012) Spore associated bacteria (SAB) of arbuscular mycorrhizal fungi (amf) and plant growth promoting rhizobacteria (PGPR) increase nutrient uptake and plant growth under stress conditions. Korean Journal of Soil Science and Fertillizer 45(4): 582-592; doi: 10.7745/KJSSF.2012.45.4.582

Selvakumar G, Thamizhiniyan P (2011) The effect of the arbuscular mycorrhizal (am) fungus Glomus intraradices on the growth and yield of chilli (Capsicum annuum L.) under salinity stress. World Applied Sciences Journal 14(8): 1209-1214

Sengupta D, Verma NK, Ghosh BC (2006) Effect of vesicular asbuscular mycorrhiza and Rhizobium on field grown ground nut in acid lateritic soil. In: Prakash A, Mehrotra VS (Eds). Mycorrhiza, pp. 215-218. Scientific Publishers (India), Jodhpur

Shaimaa AMd, Massoud ON (2017) Impact of Inoculation with Mycorrhiza and Azotobacter under Different N and P Rates on Growth, Nutrient status, Yield and Some Soil Characteristics of Washington Navel Orange Trees. Middle East J Agric Res 6(3): 617-638

Shwetha C, Lakshman HC (2013) Effect of AM fungi, Azotobacter and phosphate solubilizing bacteria in improvement of Amaranthus paniculatus L. - A leafy vegetable. Research Journal of Biotechnology 8: 36-39

Sieverding E (1991) Vesicular-arbuscular mycorrhizal management in tropical agro system. German Technical Co-operation (GZT), Eschborn

Simanungkalit RDM (2006) Arbuscular Mycorrhiza Fungi.

Singh CS, Rana JPS (2005) Arbuscular mycorrhizal fungi. In: Kaushik B D (ed). Advances in microbiology at IARI 1961-2004, pp. 123-34. Mounto publishing house, New Delhi

Smith SE, Read DJ (1997) Mycorrhizal Symbiosis. Academic Press, London

Smith SE, Read DJ (2008) Mycorrhizal Symbiosis, (3rd Edition). Academic Press, London

Subba NS (1977) Soil Microorganisms and Plant Growth. Oxford and IBH Publishing Co, New Delhi

Sundara WVB, Sinha MK (1963) Phosphate dissolving micro-organisms in the soil and rhizosphere. Indian J Agric Sci 33: 272-278

Sylvia DM (1994) Vesicular-arbuscular mycorrhizal fungi. In: Weaver RW, Angle S, Bottomley P, Bezdicek D, Smith S, Tabatabai A, Wollum A (Eds). Methods of soil Analysis, (Part 2) Microbiological and Biochemical properties, pp. 351-378. Soil Science Society of America, Madison; ISBN: 9780891188650

Vafadar F, Amooaghaie R, Otroshy Md (2014) Effects of plant-growth-promoting rhizobacteria and arbuscular mycorrhizal fungus on plant growth, stevioside, NPK, and chlorophyll content of Stevia rebaudiana. Journal of Plant Interactions 9(1): 128-136; doi: 10.1080/17429145.2013.779035

van der Heijden MGA, Martin FM, Selosse MA, Sanders IR (2015) Mycorrhizal ecology and evolution: the past, the present, and the future. New Phytologist 205: 1406-1423

Vyas M, Vyas A (2014) Field Response of Capsicum annuum Dually Inoculated with AM Fungi and PGPR in Western Rajasthan. International Journal of Research Studies in Biosciences 2(3): 21-26

Weber E, George E, Beck DP, Saxena MC, Marschner H (1992) Vesicular arbuscular mycorrhizal and phosphorus uptake in chickpea grown in Nothern Syria. Expl Agric 28: 433-442

Yazdani M, Bahmanyar MA, Pirdashti H, Esmaili MA (2009) Effect of Phosphate solubilization microorganisms (PSM) and plant growth promoting rhizobacteria (PGPR) on yield and yield components of Corn (Zea mays L.). Proc World Acad Science Eng Technol 37: 90-92

Zhang L, Fan JQ, Ding XD, He XH, Zhang FS, Feng G (2014) Hyphosphere interactions between an arbuscular mycorrhizal fungus and a phosphate solubilizing bacterium promote phytate mineralization in soil. Soil Biol Biochem 74: 177-183; doi: 10.1016/j.soilbio.2014.03.004




Copyright (c) 2021 Biotecnología Vegetal

Biotecnología Vegetal eISSN 2074-8647, RNPS: 2154. ISSN 1609-1841, RNPS: 0397 Editada por: Instituto de Biotecnología de las Plantas. Universidad Central Marta Abreu de Las Villas. Carretera a Camajuaní km 5.5, Santa Clara, Villa Clara, Cuba CP 54 830 Tel: 53 42200124, e-mail: info@ibp.co.cu

Licencia Creative Commons
Biotecnología Vegetal
está bajo una Licencia Creative Commons Atribución-NoComercial 4.0 Internacional.