Extractos bioactivos de algas marinas como bioestimulantes del crecimiento y la protección de las plantas

Adrián Alejandro Espinosa-Antón, Rosalba Mireya Hernández-Herrera, Mayelín González González

Resumen


Los extractos de algas marinas son ampliamente utilizados en la agricultura como bioestimulantes del crecimiento vegetal y constituyen una alternativa ecológica al consumo excesivo de productos agroquímicos sintéticos. Estos productos naturales son mezclas complejas de compuestos bioactivos tales como reguladores del crecimiento vegetal, polisacáridos, fenoles, aminoácidos, esteroles, betaínas, vitaminas, macro y microminerales. Su aplicación en la producción de diferentes cultivos genera un amplio espectro de respuestas positivas en el sistema planta-suelo. Sin embargo, el potencial bioestimulante de estas formulaciones no ha sido aprovechado al máximo debido al reducido conocimiento sobre sus mecanismos de acción en las plantas. Esta revisión tuvo como objetivo analizar las perspectivas de las algas marinas como fuente de extractos bioactivos para la promoción del crecimiento vegetal y la protección de los cultivos. Se describen los principales compuestos con actividad biológica en los extractos de algas marinas y los métodos para su extracción. Además, se analizan los efectos horméticos de estos bioproductos en la germinación de las semillas, el desarrollo radical, el microbioma rizosférico, el rendimiento y calidad de los cultivos, la absorción y asimilación de nutrientes por las plantas, el metabolismo y la fisiología vegetal; así como en la mitigación del estrés abiótico y el manejo de plagas y enfermedades. Por último, se describen los metabolitos predominantes en los extractos de algas cubanas para el desarrollo de nuevos bioproductos con fines agrícolas.

Palabras clave: compuestos bioactivos, crecimiento de plantas, extractos de macroalgas, producción agrícola sostenible, protección de cultivos


Palabras clave


compuestos bioactivos; crecimiento de plantas; extractos de macroalgas; producción agrícola sostenible; protección de cultivos

Texto completo:

PDF HTML

Referencias


Abbas M, Anwar J, Zafar-ul-Hye M, Khan RI, Saleem M, Rahi AA, Danish S, Datta R (2020) Effect of Seaweed Extract on Productivity and Quality Attributes of Four Onion Cultivars. Horticulturae 6(28): 1-13; doi:10.3390/horticulturae6020028

Abbassy MA, Marzouk MA, Rabea EI, Abd-Elnabi AD (2014) Insecticidal and fungicidal activity of Ulva lactuca Linnaeus (Chlorophyta) extracts and their fractions. Annual Research Review in Biology 4(13): 2252-2262; doi:10.9734/ARRB/2014/9511

Agathokleous E, Kitao M, Calabrese EJ (2020) Hormesis: Highly Generalizable and Beyond Laboratory. Trends in Plant Science 20(20): 1-11; doi:10.1016/j.tplants.2020.05.006

Alam MZ, Braun G, Norrie J, Hodges DM (2014) Ascophyllum extract application can promote plant growth and root yield in carrot associated with increased root-zone soil microbial activity. Canadian Journal of Plant Science 94: 337348; doi:10.4141/CJPS2013-135

Ammara N, Jabnoun-Khiareddine H, Mejdoub-Trabelsib B, Nefzia A, Mahjoub MA, Daami-Remadi M (2017) Pythium leak control in potato using aqueous and organic extracts from the brown alga Sargassum vulgare (C. Agardh, 1820). Postharvest Biology and Technology 130: 81-93; doi:10.1016/j.postharvbio.2017.04.010

Aremu AO, Masondo NA, Rengasamy KRR, Amoo SO, Gruz J, Bíba O, Subrtova MS, Pencík A, Novak O, Dolezal K, Van Staden J (2015) Physiological role of phenolic biostimulants isolated from brown seaweed Ecklonia maxima on plant growth and development. Planta 241: 1313-1324; doi:10.1007/s00425-015-2256-x

Arioli T, Mattner SW, Winberg PC (2015) Applications of seaweed extracts in Australian agriculture: past, present and future. Journal of Applied Phycology 27: 2007-2015; doi:10.1007/s10811-015-0574-9

Asharaja A, Sahayaraj K (2013) Screening of insecticidal activity of brown macroalgal extracts against Dysdercus cingulatus (Fab.) (Hemiptera: Pyrrhocoridae). Journal of Biopesticides 6(2): 193-203

Battacharyya D, Babbohari MZ, Rathor P, Prithiviraj B (2015) Seaweed extracts as biostimulants in horticulture. Scientia Horticulturae 196: 39-48; doi:10.1016/j.scienta.2015.09.012

Billard V, Etienne P, Jannin L, Garnica M, Cruz F, García-Mina J-M, Yvin J-C, Ourry A (2014) Two Biostimulants Derived from Algae or Humic Acid Induce Similar Responses in the Mineral Content and Gene Expression of Winter Oilseed Rape (Brassica napus L.) Journal of Plant Growth Regulation 33: 305-316; doi:10.1007/s00344-013-9372-2

Calvo P, Nelson L, Kloepper JW (2014) Agricultural uses of plant biostimulants. Plant Soil 383: 3-41; doi:10.1007/s11104-014-2131-8

Carrasco-Gil S, Hernandez-Apaolaza L, Lucena JJ (2018) Effect of several commercial seaweed extracts in the mitigation of iron chlorosis of tomato plants (Solanum lycopersicum L.). Plant Growth Regulation 86: 401-411; doi:10.1007/s10725-018-0438-9

Castellanos-Barriga LA, Santacruz-Ruvalcaba F, Hernández-Carmona G, Ramírez-Briones E, Hernández-Herrera RM (2017) Effect of seaweed liquid extracts from Ulva lactuca on seedling growth of mung bean (Vigna radiata). Journal of Applied Phycology 29: 2479-2488; doi:10.1007/s10811-017-1082-x

Castellanos ME, León AR, Moreira AR (2003) Caracterización química de la agarófita Gracilaria blodgettii Harvey en la Bahía de Cienfuegos, Cuba. Revista de Investigaciones Marinas 24(3): 185-192

Castellanos ME, Moreira AR, León AR (2012) Caracterización fitoquímica de las macroalgas marinas Gracilaria caudata, Ulva lactuca y Ulva flexuosa de la bahía de Cienfuegos, Cuba. Boletín de la Sociedad Española de Ficología 46: 4-8

Castro J, Vera J, González A, Moenne A (2012) Oligo-carrageenans stimulate growth by enhancing photosynthesis, basal metabolism, and cell cycle in tobacco plants (var. Burley). Journal of Plant Growth Regulation 31: 173-185; doi:10.1007/s00344-011-9229-5

Cook J, Zhang J, Norrie J, Blal B, Cheng Z (2018) Seaweed Extract (Stella Maris®) Activates Innate Immune Responses in Arabidopsis thaliana and Protects Host against Bacterial Pathogens. Mar. Drugs 16(221): 1-12; doi:10.3390/md16070221

Corona R, Quincoces M, Fiallo AG, Acosta SL, Hereira A, López ME, Melendrez E (2007) Caracterización de carrageninas obtenidas a partir de diferentes especies de macroalgas marinas cubanas. Revista Cubana de Química 19(2): 55-58

Craigie JS (2011) Seaweed extract stimuli in plant science and agriculture. Journal of Applied Phycology 23: 371-393; doi:10.1007/s10811-010-9560-4

Crouch IJ, van Staden J (1993) Evidence for the presence of plant growth regulators in commercial seaweed products. Plant Growth Regulation 13(1): 21-29; doi:10.1007/BF00207588

Díaz-Pifferrer M (1961) Taxonomía, Ecología y Valor Nutricional de las Algas Marinas Cubanas: III- Algas Productoras de Agar. Instituto Cubano de Investigaciones Tecnológicas, La Habana, Cuba

Di Stasio E, Van Oosten MJ, Silletti S, Raimondi G, dell’Aversana, Carrillo P, Maggio A (2018) Ascophyllum nodosum-based algal extracts act as enhancers of growth, fruit quality, and adaptation to stress in salinized tomato plants. Journal of Applied Phycology 30: 2675-2686; doi:10.1007/s10811-018-1439-9

du Jardin P (2015) Plant biostimulants: Definition, concept, main categories and regulation. Scientia Horticulturae 196: 3-14; doi:10.1016/j.scienta.2015.09.021

El Boukhari ME-M, Barakate M, Bouhia Y, Lyamlouli K (2020) Trends in Seaweed Extract Based Biostimulants: Manufacturing Process and Beneficial Effect on Soil-Plant Systems. Plants 9(359): 1-23; doi:10.3390/plants9030359

Ertani A, Francioso O, Tinti A, Schiavon M, Pizzeghello D, Nardi S (2018) Evaluation of Seaweed Extracts From Laminaria and Ascophyllum nodosum spp. as Biostimulants in Zea mays L. using a Combination of Chemical, Biochemical and Morphological Approaches. Frontiers in Plant Science 9(428): 1-13; doi:10.3389/fpls.2018.00428

Esquivel-Hernández DA, Ibarra-Garza IP, Rodríguez-Rodríguez J, Cuéllar-Bermúdez SP, de J Rostro-Alanis M, Rostro-Alanis M, Alemán-Nava GS, García-Pérez JS, Parra-Saldívar R (2017) Green extraction technologies for high-value metabolites from algae: a review. Biofuels Bioproducts & Biorefining 11: 215-231; doi:10.1002/bbb.1735

Fan D, Hodges DM, Critchley AT, Prithiviraj B (2013) A Commercial Extract of Brown Macroalga (Ascophyllum nodosum) Affects Yield and the Nutritional Quality of Spinach In Vitro. Communications in Soil Science and Plant Analysis 44(12): 1873-1884; doi:10.1080/00103624.2013.790404

Featonby-Smith BC, van Staden J (1983) The effect of seaweed concentrate on the growth of tomato plants in nematode-infested soil. Scientia Horticulturae 20: 137-146

Ghaderiardakani F, Collas E, Damiano DK, Tagg K, Graham NS, Coates JC (2019) Effects of Green seaweed extract on Arabidopsis early development suggest roles for hormone signaling in plant responses to algal fertilizers. Scientific Reports 91(1983): 1-13; doi:10.1038/s41598-018-38093-2

González-Castro AL, Muñoz-Ochoa M, Hernández-Carmona G, López-Vivas JM (2019) Evaluation of seaweed extracts for the control of the Asian citrus psyllid Diaphorina citri. Journal of Applied Phycology 31: 3815-3821; doi:10.1007/s10811-019-01896-5

González-Giro Z, Batista-Corbal PL, González-Pérez Y, Rodríguez-Leblanch E, Marcos-Albear E (2018) Evaluación de la fitotoxicidad de un extracto acuoso del alga Padina gymnospora (Kützing) sobre semillas de Lactuca sativa L. Biotecnología Vegetal 18(3): 181-188

González-González MF, Ocampo-Álvarez H, Santacruz-Ruvalcaba F, Sánchez-Hernández CV, Casarrubias-Castillo K, Becerril-Espinosa A, Castañeda-Nava JJ, Hernández-Herrera RM (2020) Physiological, Ecological, and Biochemical Implications in Tomato Plants of Two Plant Biostimulants: Arbuscular Mycorrhizal Fungi and Seaweed Extract. Frontiers in Plant Science 11(999): 1-18; doi:10.3389/fpls.2020.00999

Goñi O, Fort A, Quille P, McKeown PC, Spillane C, O’Connell S (2016) Comparative transcriptome analysis of two Ascophyllum nodosum extract biostimulants: same seaweed but different. Journal of Agricultural and Food Chemistry 64: 2980-2989; doi:10.1021/acs.jafc.6b00621

Gutiérrez R, Núñez R, Quintana L, Valdés O, González K, Rodríguez M, Hernández Y, Ortiz E (2017) Optimization of the extraction process of phenolic compounds from the brown algae Sargassum fluitans Borgesen (B°rgesen). Biotecnología Aplicada 34: 3301-3304

Hamed SM, El-Rhman AA, Abdel-Raouf N, Ibraheem IBM (2018) Role of marine macroalgae in plant protection & improvement for sustainable agriculture technology. Beni-Suef University Journal of Basic and Applied Sciences 7: 104-110; doi:10.1016/j.bjbas.2017.08.002

Hernández-Herrera RM, Santacruz-Ruvalcaba F, Ruiz-López MA, Norrie J, Hernández-Carmona G (2014a) Effect of liquid seaweed extracts on growth of tomato seedlings (Solanum lycopersicum L.). Journal of Applied Phycology 26: 619-628; doi:10.1007/s10811-013-0078-4

Hernández-Herrera RM, Santacruz-Ruvalcaba F, Zanudo-Hernández J, Hernández Carmona G (2016) Activity of seaweed extracts and polysaccharide-enriched extracts from Ulva lactuca and Padina gymnospora as growth promoters of tomato and mung bean plants. Journal of Applied Phycology 28: 2549-2560; doi:10.1007/s10811-015-0781-4

Hernández-Herrera RM, Virgen-Calleros G, Ruiz-López MA, Zañudo-Hernánde J, Délano-Frier JP, Sánchez-Hernández C (2014b) Extracts from green and brown seaweeds protect tomato (Solanum lycopersicum) against the necrotrophic fungus Alternaria solani. Journal of Applied Phycology 26: 1607-1614; doi:10.1007/s10811-013-0193-2

Holden D, Ross RE (2013) A commercial extract of the brown seaweed Ascophyllum nodosum suppresses avocado thrips and persea mites in field-grown 'hass' avocados, a practical field perspective. Acta Horticulturae 1009: 137-142; doi:10.17660/ActaHortic.2013.1009.16

Hu X, Jiang X, Hwang H, Liu S, Guan H (2004) Promotive effects of alginate-derived oligosaccharide on maize seed germination. Journal of Applied Phycology 16: 73-76

Jannin L, Arkoun M, Etienne P, Laîné P, Goux D, Garnica M, Fuentes M, San Francisco S, Baigorri R, Cruz F, Houdusse F, Garcia-Mina J, Yvin J, Ourry A (2013) Brassica napus growth is promoted by Ascophyllum nodosum (L.) Le Jol. seaweed extract: microarray analysis and physiological characterization of N, C, and S metabolisms. Journal of Plant Growth Regulation 32(1): 31-52; doi:0.1007/s00344-012-9273-9

Jibril SM, Jakada BH, Kutama AS, Umar HY (2016) Plant and pathogens: pathogen recognision, invasion and plant defense mechanism. International Journal of Current Microbiology and Applied Sciences 5(6): 247-257; doi:10.20546/ijcmas.2016.506.028

Jiménez E, Dorta F, Medina C, Ramírez A, Ramírez I, Peña-Cortés H (2011) Anti-phytopathogenic activities of macro-algae extracts. Marine Drugs 9: 739-756; doi:10.3390/md9050739

Kasim WAE-A, Saad-Allah KM, Hamouda M (2016) Seed Priming with Extracts of two Seaweeds Alleviates the Physiological and Molecular Impacts of Salinity Stress on Radish (Raphanus sativus). International Journal of Agriculture and Biology 18(3): 653-660; doi:10.17957/IJAB/15.0152

Khan W, Rayirath UP, Subramanian S, Jithesh MN, Rayorath P, Hodges DM, Critchley AT, Craigie JS, Norrie J, Prithiviraj B (2009) Seaweed extracts as biostimulants of plant growth and development. Journal of Plant Growth Regulation 28: 386-399; doi:10.1007/s00344-009-9103-x

Khan W, Zhai R, Souleimanov A, Critchley AT, Smith DL, Prithiviraj B (2012) Commercial extract of Ascophyllum nodosum improves root colonization of alfalfa by its bacterial symbiont Sinorhizobium meliloti. Communications in Soil Science and Plant Analysis 43(18): 2425-2436; doi:10.1080/00103624.2012.708079

Klarzynski O, Descamps V, Plesse B, Yvin J-C, Kloareg B, Fritig B (2003) Sulfated fucan oligosaccharides elicit defense responses in tobacco and local and systemic resistance against tobacco mosaic virus. Molecular Plant-Microbe Interactions 16(2): 115-122; doi:10.1094/MPMI.2003.16.2.115

Kocira A, Lamorska J, Kornas R, Nowosad N, Tomaszewka M, Leszcyńska D, Kozlowicz K, Tabor S (2020) Changes in Biochemistry and Yield in Response to Biostimulants Applied in Bean (Phaseolus vulgaris L.). Agronomy 10(189): 1-19; doi:10.3390/agronomy10020189

Kocira S, Szparaga A, Kuboń M, Czerwińska E, Piskier T (2019) Morphological and Biochemical Responses of Glycine max (L.) Merr. to the Use of Seaweed Extract. Agronomy 9(93): 1-23; doi:10.3390/agronomy9020093

Kulik MM (1995) The potential for using cyanobacteria (blue-green algae) and algae in the biological control of plant pathogenic bacteria and fungi. European Journal of Plant Pathology 101: 585-599; doi:10.1007/BF01874863

Kuwada K, Kuramoto M, Utamura M, Matsushita I, Shibata Y, Ishii T (2005) Effect of mannitol from Laminaria japonica, other sugar alcohols, and marine alga polysaccharides on in vitro hyphal growth of Gigaspora margarita and root colonization of trifoliate orange. Plant and Soil 276: 279-286; doi:10.1007/s11104-005-4985-2

Kuwada K, Wamocho LS, Utamura M, Matsushita I, Ishii T (2006) Effect of red and green algal extracts on hyphal growth of arbuscular fungi, and on mycorrhizal development and growth of papaya and passionfruit. Agronomy Journal 98(5): 1340-1344; doi:10.2134/agronj2005.0354

Layek J, Das A, Idapuganti RG, Sarkar D, Ghosh A, Zodape ST, Lal R, Yadav GS, Panwar AS, Ngachan S, Meena RS (2018) Seaweed extract as organic bio-stimulant improves productivity and quality of rice in eastern Himalayas. Journal of Applied Phycology 30: 547-558; doi:10.1007/s10811-017-1225-0

Mahmoud SH, Salama DM, El-Tanahy AMM, El-Samad EHA (2019) Utilization of seaweed (Sargassum vulgare) extract to enhance growth, yield and nutritional quality of red radish plants. Annals of Agricultural Sciences 64: 167-175; doi:10.1016/j.aoas.2019.11.002

Mendoza-Morales LT, Mendoza-González AC, Mateo-Cid LE, Rodríguez-Dorantes A (2019) Analysis of the effect as biostimulants of Sargassum vulgare and Ulva fasciata extracts on Lens esculenta growth. Mexican Journal of Biotechnology 4(4): 15-28; doi:10.29267/mxjb.2019.4.4.15

Michalak I, Chojnacka K (2014) Algas extracts: Technology and advances. Engineering in Life Sciences 14 (6): 581-591; doi:10.1002/elsc.201400139

Moreira L, Cabrera R, Suárez AM (2006) Evaluación de macroalgas marinas del género Sargassum C. Agardh (Phaeophyta, Fucales). Revista de Investigaciones Marinas 27(2): 115-120

Nabti E, Jha B, Hartmann A (2017) Impact of seaweeds on agricultural crop production as biofertilizer. International Journal of Environmental Science and Technology 14(5): 1119-1134; doi:10.1007/s13762-016-1202-1

Nair P, Kandasamy S, Zhang J, Ji X, Kirby C, Benkel B, Hodges MD, Critchley AT, Hiltz D, Prithiviraj B (2012) Transcriptional and metabolomic analysis of Ascophyllum nodosum mediated freezing tolerance in Arabidopsis thaliana. BMC Genomics 13(643): 1-23; doi:10.1186/1471-2164-13-643

Nayak P, Biswas S, Dutta D (2020) Effect of seaweed extracts on growth, yield and economics of kharif rice (Oryza sativa L.). Journal of Pharmacognosy and Phytochemistry 9(3): 247-253; doi:10.22271/phyto.2020.v9.i3d.11269

Ngala BM, Valdes Y, dos Santos G, Perry RN, Wesemael WML (2016) Seaweed-based products from Ecklonia maxima and Ascophyllum nodosum as control agents for the root-knot nematodes Meloidogyne chitwoodi and Meloidogyne hapla on tomato plants. Journal of Applied Phycology 28: 2073-208; doi:10.1007/s10811-015-0684-4

Omar H, Abdullatif B, Al-Kazan M, El-Gendy A (2014) Various Applications of Seaweed Improves Growth and Biochemical Constituents of Zea mays L. and Helianthus annus L. Journal of Plant Nutrition 38(1): 28-40; doi:10.1080/01904167.2014.911893

Paparella S, Araújo SS, Rossi G, Wijayasinghe M, Carbonera D, Balestrazzi A (2015) Seed priming: state of the art and new perspectives. Plant Cell Reports 34: 1281-1293; doi:10.1007/s00299-015-1784-y

Pardee KI, Ellis P, Bouthillier M, Towers GHN, French CJ (2004) Plant virus inhibitors from marine algae. Canadian Journal of Botany 82(3): 304-309; doi:10.1139/B04-002

Pérez MJ, Falqué E, Domínguez H (2016) Antimicrobial Action of Compounds from Marine Seaweed. Marine Drugs 14(52): 1-38; doi:10.3390/md14030052

Posada-Pérez L, Padrón-Montesinos Y, González-Olmedo J, Barbón-Rodriguez R, Rodríguez-Sánchez R, Norman-Montenegro O, Rodriguez-Escriba RC, Daniel D, Gómez-Kosky R (2015) Effect of phloroglucinol on rooting and in vitro acclimatization of papaya (Carica papaya L. var. Maradol Roja). In Vitro Cellular & Developmental Biology – Plant 52(2): 196-203; doi:10.1007/s11627-015-9733-6

Pramanick B, Brahmachari K, Mahapatra BS, Ghosh A, Ghosh D, Kar S (2017) Growth, yield and quality improvement of potato tubers through the application of seaweed sap derived from the marine algae Kappaphycus alvarezii. Journal of Applied Phycology 29: 3253-3260; doi:10.1007/s10811-017-1189-0

Rayorath P, Jithesh MN, Farid A, Khan W, Palanisamy R, Hankins SD, Critchley AT, Prithiviraj B (2008a) Rapid bioassays to evaluate the plant growth promoting activity of Ascophyllum nodosum (L.) Le Jol. using a model plant, Arabidopsis thaliana (L.) Heynh. Journal of Applied Phycology 20(4): 423-429; doi:10.1007/s10811-007-9280-6

Rayorath P, Khan W, Palanisamy R, MacKinnon SL, Stefanova R, Hankins SD, Critchley AT, Prithiviraj (2008b) Extracts of the Brown Seaweed Ascophyllum nodosum Induce Gibberellic Acid (GA3)-independent Amylase Activity in Barley. Journal of Plant Growth Regulation 27: 370-379; doi:10.1007/s00344-008-9063-6

Renaut S, Masse J, Norrie JP, Blal B, Hijri M (2019) A commercial seaweed extract structured microbial communities associated with tomato and pepper roots and significantly increased crop yield Microbial Biotechnology 12(6): 1346-1358; doi:10.1111/1751-7915.13473

Rengasamy KRR, Kulkarni MG, Pendota SC, Van Staden J (2016) Enhancing growth, phytochemical constituents and aphid resistance capacity in cabbage with foliar application of eckol- a biologically active phenolic molecule from brown seaweed. New Biotechnology 33(2): 273-279; doi:10.1016/j.nbt.2015.11.002

Rengasamy KRR, Kulkarni MG, Stirk WA, van Staden J (2015) Eckol improves growth, enzyme activities, and secondary metabolite content in maize (Zea mays cv. Border King). Journal of Plant Growth Regulation 34: 410-416; doi:10.1007/s00344-015-9479-8

Rojas L, Álvarez IM, Moriera LF, Valdés O, del Barrio G (2016) Evaluación preliminar de la actividad antiviral del extracto de Laurencia obtusa frente a herpesvirus y virus dengue. Revista Cubana de Farmacia 50(1): 106-116

Rouphael Y, Colla G (2020) Editorial: Biostimulants in Agriculture. Frontiers in Plant Science 11(40): 1-7; doi:10.3389/fpls.2020.00040

Salehi B, Sharifi-Rad J, Seca AML, Pinto DCGA, Michalak I, Trincone A, Mishra AP, Nigam M, Zam W, Martins N (2019) Current Trends on Seaweeds: Looking at Chemical Composition, Phytopharmacology, and Cosmetic Applications. Molecules 24(4182): 1-49; doi:10.3390/molecules24224182

Sandepogu M, Shukla PS, Asiedu S, Yurgel S, Prithiviraj B (2019) Combination of Ascophyllum nodosum Extract and Humic Acid Improve Early Growth and Reduces Post-Harvest Loss of Lettuce and Spinach. Agriculture 9(240): 2-16; doi:10.3390/agriculture9110240

Seckin B, Sekmen AH, Turkan I (2009) An enhancing effect of exogenous mannitol on the antioxidant enzyme activities in roots of wheat under salt stress. Journal of Plant Growth Regulation 28: 12-20; doi:10.1007/s00344-008-9068-1

Sharma HS, Fleming C, Selby C, Rao JR, Martin T (2014) Plant biostimulants: a review on the processing of macroalgae and use of extracts for crop management to reduce abiotic and biotic stresses. Journal of Applied Phycology 26(1): 465-490; doi:10.1007/s10811-013-0101-9

Sharma S, Chen C, Khatri K, Rathore MS, Pandey SP (2019) Gracilaria dura extract confers drought tolerance in wheat by modulating abscisic acid homeostasis. Plant Physiology and Biochemistry 136: 143-154; doi:10.1016/j.plaphy.2019.01.015

Shukla PS, Borza T, Critchley AT, Prithiviraj B (2016) Carrageenans from Red Seaweeds As Promoter of Growth and Elicitors of Defense Response in Plants. Frontiers in Marine Science 3(81): 1-9; doi:10.3389/fmars.2016.00081

Shukla PS, Mantin EG, Adil M, Bajpai S, Critchley AT and Prithiviraj B (2019) Ascophyllum nodosum-Based Biostimulants: Sustainable Applications in Agriculture for the Stimulation of Plant Growth, Stress Tolerance, and Disease Management. Frontiers in Plant Science 10(655): 1-22; doi:10.3389/fpls.2019.00655

Silva LD, Bahcevandziev K, Pereira L (2019) Production of bio-fertilizer from Ascophyllum nodosum and Sargassum muticum (Phaeophyceae). Journal of Oceanology and Limnology 37(3): 918-927; doi:10.1007/s00343-019-8109-x

Singh I, Gopalakrishnan VAK, Solomon S, Shukla SK, Rai R, Zodape ST, Ghosh A (2018) Can we not mitigate climate change using seaweed based biostimulant: A case study with sugarcane cultivation in India. Journal of Cleaner Production 204: 992-1003; doi:10.1016/j.jclepro.2018.09.070

Stadnik MJ, de Freitas MB (2014) Algal polysaccharides as source of plant resistance inducers. Tropical Plant Pathology 39(2): 111-118; doi:10.1590/S1982-56762014000200001

Stirk WA, Novák O, Hradecká V, Pĕnčík A, Rolčík J, Strnad M, Van Staden J (2009) Endogenous cytokinins, auxins and abscisic acid in Ulva fasciata (Chlorophyta) and Dictyota humifusa (Phaeophyta): towards understanding their biosynthesis and homoeostasis. European Journal of Phycology 44(2): 231-240; doi:10.1080/09670260802573717

Stirk WA, Tarkowská D, Turečová V, Strnad M, van Staden J (2014) Abscisic acid, gibberellins and brassinosteroids in Kelpak®, a commercial seaweed extract made from Ecklonia maxima. Journal of Applied Phycology 26: 561-567; doi:10.1007/s10811-013-0062-z

Stirk WA, van Staden J (1997) Comparison of cytokinin- and auxin-like activity in some commercially used seaweed extracts. Journal of Applied Phycology 8: 503-508

Suárez AM, Martínez-Daranas B, Alfonso Y (2015) Macroalgas marinas de Cuba. Editorial UH, La Habana; ISBN: 978-959-7211-44-0

Tarakhovskaya ER, Maslov YI, Shishova MF (2007) Phytohormones in algae. Russian Journal of Plant Physiology 54(2): 163-170

Thodhal S, Raguraman V, Muniswamy G, Sathyamoorthy G, Renuka RR, Chidambaram J, Rajendran T, Chandrasekaran K, Santha Ravindranath RR (2019) Mineral and trace metal concentrations in seaweeds by Microwave-Assisted Digestion Method followed by Quadrupole Inductively Coupled Plasma Mass Spectrometry. Biological Trace Element Research 187(2): 579-585; doi:10.1007/s12011-018-1397-8

Torres EG, Martínez-Daranas B (2019) Lista de especies de las arribazones de macrofitobentos en cinco playas de Habana del Este, Cuba. Revista de Investigaciones Marinas 39(1): 39-49

Torres-Conde EG, Martínez-Daranas B (2020) Análisis espacio-temporal y oceanográfico de las arribazones de Sargassum pelágico en las playas del Este de La Habana, Cuba. Revista de Investigaciones Marinas 40(1): 22-41

Ummat V, Tiwari BK, Jaiswal AK, Condon K, Garcia-Vaquero M, O’Doherty J, O’Donnell C, Rajauria G (2020) Optimisation of Ultrasound Frequency, Extraction Time and Solvent for the Recovery of Polyphenols, Phlorotannins and Associated Antioxidant Activity from Brown Seaweeds. Marine drugs 18(250): 1-25; doi:10.3390/md18050250

Valdés-Iglesias O, Fajer V, Naranjo S, González K, Hernández Y, Mora W, Fonfría C, Arista E, Fernandez S, Hormazac V (2018) Isolation of polysaccharides, fucose and other optically active compounds from marine vegetable extracts by means of Liquid Chromatography with a Laser Polarimetric Detector. Revista Cubana de Física 35(1E): 20-30

Van Oosten MJ, Pepe O, De Pascale S, Silletti S, Maggio A (2017) The role of biostimulants and bioeffectors as alleviators of abiotic stress in crop plants. Chemical and Biological Technologies in Agriculture 4(5): 1-12; doi:10.1186/s40538-017-0089-5

Vargas-Hernández M, Macías-Bobadilla I, Guevara-González RG, Romero-Gómez SJ, Rico-García E, Ocampo-Velázquez R, Álvarez-Aquieta LL, Torres-Pacheco I (2017) Plant hormesis management with biostimulants of biotic origin in agriculture. Frontiers in Plant Science 8(1762): 1-11; doi:10.3389/fpls.2017.01762

Vera J, Castro J, Gonzalez A, Moenne A (2011) Seaweed Polysaccharides and Derived Oligosaccharides Stimulate Defense Responses and Protection Against Pathogens in Plants. Marine Drugs 9(12): 2514-2525; doi:10.3390/md9122514

Vidal A, Silva de Andrade-Wartha ER, de Oliveira e Silva AM, Pavan R, Lima A, Fallarero A, Batista AE, Mancini-Filho J (2009) Actividad antioxidante y polifenoles de las algas marinas Halimeda opuntia y Halimeda monile. ARS Pharmaceutica 50(1): 24-31

Vijayakumar S, Durgadevi S, Arulmozhi P, Rajalakshmi S, Gopalakrishnan T, Parameswari N (2018) Effect of seaweed liquid fertilizer on yield and quality of Capsicum annum L. Acta Ecologica Sinica 39(5): 406-410; doi:10.1016/jchnaes.2018.10.001

Vinoth S, Gurusaravanan P, Sivakumar S, Jayabalan N (2019) Influence of seaweed extracts and plant growth regulators on in vitro regeneration of Lycopersicon esculentum from leaf explant. Journal of Applied Phycology 31: 2039-2052; doi:10.1007/s10811-018-1703-z

Wally OSD, Critchley AT, Hiltz D, Craigie JS, Han X, Zaharia LI, Abrams SR, Prithiviraj B (2013) Regulation of phytohormone biosynthesis and accumulation in Arabidopsis following treatment with commercial extract from the marine macroalga Ascophyllum nodosum. Journal of Plant Growth Regulation 32(2): 324-339; doi:10.1007/s00344-012-9301-9

Yalçin S, Okudan ES, Karakaş O, Önem AN, Başkan KS (2019) Identification and quantification of some phytohormones in seaweeds using UPLC-MS/MS. Journal of Liquid Chromatography & Related Technologies 42(15-16): 475-484; doi:10.1080/10826076.2019.1625374

Yao Y, Wang X, Chen B, Zhang M, Ma J (2020) Seaweed Extract Improved Yields, Leaf Photosynthesis, Ripening Time, and Net Returns of Tomato (Solanum lycopersicum Mill.). ACS Omega 5: 4242-4249; doi:10.1021/acsomega.9b04155

Yokoya NS, Stirk WA, van Standen J, Novák O, Turecková V, Pěnčík A, Strnad M (2010) Endogenous cytokinins, auxins and abscisic acid in red algae from Brazil. Journal of Phycology 46: 1198-1205; doi:10.1111/j.1529-8817.2010.00898.x

Zamani-Babgohari M, Critchley AT, Norrie J, Prithiviraj B (2019) Increased freezing stress tolerance of Nicotiana tabacum L. cv. Bright Yellow-2 cell cultures with the medium addition of Ascophyllum nodosum (L.) Le Jolis extract. In Vitro Cellular & Developmental Biology- Plant 55: 321-333; doi:10.1007/s11627-01909972-8

Zewail RMY (2014) Effect of seaweed extract and amino acids on growth and productivity and some bioconstituents of common bean (Phaseolus vulgaris L.) plants. Journal of Plant Production, Mansoura University 5(8): 1441-1453

Zhang X, Ervin EH (2008) Impact of seaweed extract-based cytokinins and zeatin riboside on creeping bent grass heat tolerance. Crop Science 48(1): 364-370; doi:10.2135/cropsci2007.05.0262

Zou P, Lu X, Zhao H, Yuan Y, Meng L, Zhang C, Li Y (2019) Polysaccharides Derived From the Brown Algae Lessonia nigrescens Enhance Salt Stress Tolerance to Wheat Seedlings by Enhancing the Antioxidant System and Modulating Intracellular Ion Concentration. Frontiers in Plant Science 10(48): 1-15; doi:10.3389/fpls.2019.00048




Copyright (c) 2021 Biotecnología Vegetal

Biotecnología Vegetal eISSN 2074-8647, RNPS: 2154. ISSN 1609-1841, RNPS: 0397 Editada por: Instituto de Biotecnología de las Plantas. Universidad Central Marta Abreu de Las Villas. Carretera a Camajuaní km 5.5, Santa Clara, Villa Clara, Cuba CP 54 830 Tel: 53 42200124, e-mail: info@ibp.co.cu

Licencia Creative Commons
Biotecnología Vegetal
está bajo una Licencia Creative Commons Atribución-NoComercial 4.0 Internacional.