Análisis de la expresión de tres genes del metabolismo de los fenilpropanoides durante la interacción Musa spp.-Mycosphaerella fijiensis y en respuesta a etefón

Milady Mendoza-Rodríguez, Orelvis Portal, Bárbara Ocaña, Mayra Acosta-Suárez, Berkis Roque, Monica Höfte, Elio Jiménez

Resumen


La ruta de los fenilpropanoides es una de las mejor estudiada, más manipulada y frecuentemente inducida por patógenos o elicitores de patógenos. Los perfiles de expresión de chalcona sintasa (CHS), similar a flavonoide 3’5' hidroxilasa (F3’5’H-like) y similar a la isoflavona reductasa (IFR-like), fueron analizados en plantas de ‘Calcutta 4’ (resistente) y ‘Grande naine’ (susceptible) a los 0, 6 y 12 días posteriores a la inoculación artificial con M. fijiensis y después del tratamiento con etefón 500 ì M. La técnica de reverso transcripción-reacción en cadena de la polimerasa (RT- PCR) con cebadores específicos, fue utilizada para este propósito. En presencia del hongo, los genes F3’5’H-like and IFR-like tuvieron expresión constitutiva mientras que el gen de la chalcona sintasa fue inducido (de una forma mas significativa en ‘Calcutta 4’), en el rango de tiempo probado para ambos genotipos. El productor de etileno etefón indujo el gen IFR-like en el genotipo resistente y el gen F3’5’H-like en el susceptible. Estos resultados permitirán continuar profundizando en el estudio del papel de los fenilpropanoides en la interacción Musa-M. fijiensis.

Palabras clave: chalcona sintasa (CHS), Musa spp., similar a flavonoide 3’5' hidroxilasa (F3’5’H-like), similar a la isoflavona reductasa (IFR-like)


Texto completo:

PDF HTML

Referencias


Alvarado-Capó Y, Leiva M, Dita Rodríguez MA, Acosta M, Cruz M, Portal N, Gómez R, García LR, Bermúdez I, Padrón Y (2003) Early evaluation of black leaf streak resistance by using mycelial suspensions of Mycosphaerella fijiensis. In: Jacome L, Lepoivre P, Marín DH, Ortiz R, Romero RA and Escalant J-V (Eds.) Mycosphaerella leaf spot diseases of bananas: present status and outlook. Proceedings of the 2nd International Workshop on Mycosphaerella leaf spot diseases. INIBAP, San José, Costa Rica. pp. 169-175

Arfaoui A, El Hadrami A, Mabrouk Y, Si B, Boudabous A, El Hadrami I, Daayf F, Chérif M (2007) Treatment of chickpea with Rhizobium isolates enhances the expression of phenylpropanoid defense-related genes in response to infection by Fusarium oxysporum f. sp. ciceris. Plant Physiology and Biochemistry 45: 470-479

Bell JN, Dixon RA, Bailey JA, Rowel PM, Lamb CJ (1984) Differential induction of chalcone synthase mRNA activity at the onset of phytoalexin accumulation in compatible and incompatible plant-pathogen interactions. Proc. Natl. Acad. Sci. USA 81: 3384-3388

Carlier J, De Waele D, Escalant J-V (2003) Global evaluation of Musa germplasm for resistance to Fusarium wilt, Mycosphaerella leaf spot diseases and nematodes. In: Vézina A and Picq C (Eds.) INIBAP Technical Guidelines 7. The International Network for the Improvement of Banana and Plantain. Montpellier, France

Casati P, Walbot V (2003) Gene expression profiling in response to ultraviolet radiation in maize genotypes with varying flavonoid content. Plant Physiology 132 (4): 1739-1754

Collingborn FMB, Gowen SR, Mueller-Harvey I (2000) Investigations into the biochemical basis for nematode resistance in roots of three Musa cultivars in response to Radopholus similis infection. J. Agric. Food Chem 48 (11): 5297-5301

Cruz-Martín M, Alvarado-Capó Y, Acosta-Suárez M, Leiva-Mora M, Roque B (2004) Caracterización de aislados de Pseudocercospora fijiensis Morelet para su utilización en programas de mejoramiento de Musa spp. Biotecnología Vegetal 4 (2): 111-114

Curir P, Dolci M, Galeotti F (2005) A phytoalexin-like flavonol involved in the carnation (Dianthus caryophyllus)-Fusarium oxysporum f. sp. dianthi pathosystem. J. Phytopathology 153: 65-67

De Paepe A, Vuylsteke M, Van Hummelen P, Zabeau M, Van Der Straeten D (2004) Transcriptional proling by cDNA-AFLP and microarray analysis reveals novel insights into the early response to ethylene in arabidopsis. The Plant Journal 39: 537-559

Dixon RA, Lamb CJ (1990) Molecular communication in interactions between plants and microbial pathogens. Annu. Rev. Plant. Physiol. Plant Mol. Biol. 41: 339-367

Dixon RA, Achnine L, Kota P, Liu C-J, Srinivasa Reddy MS, Wang L (2002) The phenylpropanoid pathway and plant defence-a genomics perspective. Molecular Plant Pathology 3 (5): 371-390

Hammerschmidt R (1999) Phytoalexins: What have we learned after 60 years. Ann. Rev. Phytopathol. 37: 285-306

He P, Shan L, Sheen J (2007) Elicitation and suppression of microbe-associated molecular pattern-triggered immunity in plant–microbe interactions. Cellular Microbiology 9 (6): 1385-1396

Horry J-P, Jay M (1990) An evolutionary background of bananas as deduced from flavonoids diversification. En: Jarret RL (Ed.) Identification of genetic diversity in the genus Musa. Proceedings of an international workshop. Los Baños, Philippines, 5-10 september 1988. pp. 41-55

Hoss R, Helbig J, Bochow H (2000) Function of host and fungal metabolites in resistance response of banana and plantain in the black Sigatoka disease pathosystems (Musa spp.-Mycosphaerella fijiensis). Journal of Phytopathology 148: 387-394

Kesari R, Kumar Trivedi P, Nath P (2007) Ethylene-induced ripening in banana evokes expression of defense and stress related genes in fruit tissue. Postharvest Biology and Technology 46: 136-143

Kim ST, Cho KS, Kim SG, Kang SY, Kang KY (2003) A rice isoflavone reductase-like gene, OsIRL, is induced by rice blast fungal elicitor. Mol. Cells 16 (2): 224-231

Laudert D, Weiler EW (1998) Allene oxide synthase: A major control point in Arabidopsis thaliana octadecanoid signaling. Plant J. 15: 675-684

Lers A, Burd S, Lomaniec E, Droby S, Chalutz E (1998) The expression of a grapefruit gene encoding an isoavone reductase-like protein is induced in response to UV irradiation. Plant Molecular Biology 36: 847-856

Liao Z, Chen M, Gong Y, Tang F, Sun X, Tang K (2004) Rapid isolation of high quality total RNA from Taxus and Ginkgo. Preparative Biochemistry and Biotechnology 34 (3): 209-214

Naoumkina MA, Farag MA, Sumner LW, Tang Y, Liu C-J, Dixon RA (2007) Different mechanisms for phytoalexin induction by pathogen and wound signals in Medicago truncatula. PNAS 104 (46): 17909-17915

Otálvaro F, Echeverri F, Quiñones W, Torres F, Schneider B (2002) Correlation between phenylphenalenone phytoalexins and phytopathological properties in Musa and the role of a dihydrophenylphenalene triol. Molecules 7: 331-340

Otálvaro F, Nanclares J, Vásquez LE, Quiñones W, Echeverri F, Arango R, Schneider B (2007) Phenalenone-type compounds from Musa acuminata var. ‘Yangambi km5’ (AAA) and their activity against Mycosphaerella fijiensis. Journal of Natural Products 70: 887-890

Portal O (2009) Development of molecular tools to study the interaction between banana and Mycosphaerella fijiensis, the causal agent of black leaf streak disease. PhD Thesis. Department of Crop Protection, Laboratory of Phytopathology. Universiteit Gent, Gent. 162 p.

Rozen S, Skaletsky H (2000) Primer 3 on the WWW for general users and for biologist programmers. Humana Press Inc. Totowa, NJ

Saunders JA, O’Neill NR (2004) The characterization of defense responses to fungal infection in alfalfa. BioControl 49: 715-728

Strosse H, Van den Houwe I, Panis B (2004) Banana cell and tissue culture-review. Science Publishers. Enfield (NH), USA and Plymouth, UK

Treutter D (2005) Significance of flavonoids in plant resistance and enhancement of their biosynthesis. Plant Biology 7: 581-591

Treutter D (2006) Signicance of avonoids in plant resistance: a review. Environ. Chem. Lett. 4: 147-157

Umemura K, Ogawa N, Shimura M, Koga J, Usami H, Kono T (2003) Possible role of phytocassane, rice phytoalexin, in disease resistance of rice against the blast fungus Magnaporthe grisea. Biotechnology and Biochemistry 67: 899-902

Valette C, Andary C, Geiger JP, Sarah J-L, Nicole M (1998) Histochemical and cytochemical investigations of phenols in roots of banana infected by the burrowing nematode Radopholus similis. Phytopathology 88 (11): 1141-1148

VanEtten HD, Manseld JW, Bailey JA, Farmer EE (1994) Two classes of plant antibiotics: phytoalexins versus ‘‘phytoanticipins’’. The Plant Cell 6: 1191-1192

Wang X, El Hadrami A, Adam LR, Daayf F (2006) Local and distal gene expression of pr-1 and pr-5 in potato leaves inoculated with isolates from the old (US-1) and the new (US-8) genotypes of Phytophthora infestans (Mont.) de Bary. Environmental and Experimental Botany 57: 70-79

Winkel-Shirley B (2002) Biosynthesis of flavonoids and effects of stress. Current Opinion in Plant Biology 5: 218-223

Wuyts N, De Waele D, Swennen R (2006) Activity of phenylalanine ammonia-lyase, peroxidase and polyphenol oxidase in roots of banana (Musa acuminata AAA, cvs Grande Naine and Yangambi km5) before and after infection with Radopholus similis. Nematology 8 (2): 201-209

Zabala G, Zou J, Tuteja J, Gonzalez DO, Clough SJ, Vodkin LO (2006) Transcriptome changes in the phenylpropanoid pathway of Glycine max in response to Pseudomonas syringae infection. BMC Plant Biology 6: 1-45




Copyright (c) 2016 Biotecnología Vegetal

Biotecnología Vegetal eISSN 2074-8647, RNPS: 2154. ISSN 1609-1841, RNPS: 0397 Editada por: Instituto de Biotecnología de las Plantas. Universidad Central Marta Abreu de Las Villas. Carretera a Camajuaní km 5.5, Santa Clara, Villa Clara, Cuba CP 54 830 Tel: 53 42200124, e-mail: info@ibp.co.cu

Licencia Creative Commons
Biotecnología Vegetal
está bajo una Licencia Creative Commons Atribución-NoComercial 4.0 Internacional.