Identificación y filogenia de la familia de proteínas tipo receptoras en tomate

Ermis Yanes-Paz, Gioser María Ramos-Echazábal, Glay Chinea, Yanelis Capdesuñer Ruiz, Ramón Santos Bermúdez

Resumen


Las proteínas tipo receptoras juegan múltiples papeles en procesos de desarrollo y defensa. En este trabajo se identificaron 75 RLPs en tomate (Solanum lycopersicum L.) mediante el empleo de búsquedas BLAST iterativas y predicción de dominios. Se construyó un árbol filogenético que incluyó todas las RLPs identificadas en tomate y otras proteínas de este tipo caracterizadas funcionalmente en otras especies. Primero se comprobó si la filogenia basada en la región C3-F constituía un buen indicador de la relación funcional entre proteínas relacionadas de diferentes especies. Se comprobó que, de hecho, las proteínas CLAVATA2 y su ortólogo en maíz FEA2 (FASCIATED EAR2) y la probable CLAVATA2 de tomate descrita en Uniprot se agruparon en una misma rama, lo que valida el enfoque. Con este procedimiento se identificó Solyc12g042760.1.1 como el probable homólogo en tomate del gen TMM. Se demostró que las proteínas en el mismo cluster en el árbol comparten relaciones funcionales, pues se formaron varios cluster de proteínas relacionadas funcionalmente como por ejemplo el cluster Ve, el cluster Cf, y la clada Eix.

 

Palabras clave: filogenia, receptores, RLP, tomate


Texto completo:

PDF HTML PDF_Comp XML_Comp

Referencias


Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research 25: 3389–3402

Caicedo AL, Schaal BA (2004) Heterogeneous evolutionary processes affect R gene diversity in natural populations of Solanum pimpinellifolium. Proceedings of the Natural Academic of Sciences of the United States 101 (50):17444–17449; doi: 10.1073/pnas.0407899101

Dickinson M, Jones DA, Jones JDG (1993) Close linkage between the Cf-2/Cf-5 and Mi resistance loci in tomato. Molecular Plant-Microbe Interaction 6 (3): 341–347

Dixon MS, Hatzixanthis K, Jones DA, Harrison K, Jones JDG (1998) The tomato Cf-5 disease resistance gene and six homologs show pronounced allelic variation in leucine-rich repeat copy number. Plant Cell 10 (11): 1915–1925

Dixon MS, Jones DA, Keddie JS, Thomas CM, Harrison K, Jones JDG (1996) The tomato Cf-2 disease resistance locus comprises two functional genes encoding leucine-rich repeat proteins. Cell 84 (3): 451–459

Emanuelsson O, Brunak S, von Heijne G, Nielsen H (2007) Locating proteins in the cell using TargetP, SignalP, and related tools. Nature Protocols 2 (4): 953-971; doi: 10.1038/nprot.2007.131

Fradin EF, Abd-El-Haliem A, Masini L, van den Berg GC, Joosten MH, Thomma BP (2011) Interfamily transfer of tomato Ve1 mediates Verticillium resistance in Arabidopsis. Plant Physiology 156 (4): 2255–2265; doi: 10.​1104/​pp.​111.​180067

Fradin EF, Zhang Z, Ayala JCJ, Castroverde CDM, Nazar RN, Robb J, Liu CM and Thomma BPHJ (2009) Genetic dissection of Verticillium wilt resistance mediated by tomato Ve1. Plant Physiology 150 (1): 320-332; doi: 10.​1104/​pp.​109.​136762

Fradin EF, Zhang Z, Rovenich H, Song Y, Liebrand TW, Masini L (2014) Functional Analysis of the Tomato Immune Receptor Ve1 through Domain Swaps with Its Non-Functional Homolog Ve2. PloS One 9 (2): 1-14; doi: 10.1371/journal.pone.0088208

Fritz-Laylin LK, Krishnamurthy N, Tör M, Sjolander KV, Jones JD (2005) Phylogenomic analysis of the receptor-like proteins of rice and Arabidopsis. Plant Physiology 138 (2): 611–62; doi: 10.​1104/​pp.​104.​054452

Jeong S, Trotochaud AE, Clark E (1999) The Arabidopsis CLAVATA2 gene encodes a receptor-like protein required for the stability of the CLAVATA1 receptor-like kinase. Plant Cell 11 (10): 1925–1933

Jones DA, Jones JD (1997) The role of leucine-rich repeat proteins in plant defences. Advances in Botanical Research 24: 89–167; doi: 10.1016/S0065-2296(08)60072-5

Jones DA, Thomas CM, Hammond-Kosack KE, Balint-Kurti PJ, Jones JDG (1994) Isolation of the tomato Cf-9 gene for resistance to Cladosporium fulvum by transposon tagging. Science 266 (5186): 789–793

Käll L, Krogh A, Sonnhammer E (2004) A Combined Transmembrane Topology and Signal Peptide Prediction Method.Journal of Molecular Biology 338(5):1027-1036; doi: 10.1016/j.jmb.2004.03.016

Katoh K, Misawa K, Kuma K, Miyata T (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Research 30 (14): 3059–3066

Kawchuk L, Hachey J, Lynch DR, Klcsar F, van Rooijen G, Waterer DR, Robertson A, Kokko E, Byers R, Howard RJ, Fischer R , Prufer D (2001) Tomato Ve disease resistance genes encode cell surface-like receptors. Proceedings of the Natural Academic of Sciences of the United States 98 (11): 6511–6515; doi: 10.1073/pnas.091114198

Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: Molecular Evolutionary Genetics Analysis Using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Method. Molecular Biology and Evolution 28 (10): 2731-2739; doi: 10.1093/molbev/msr121

Lüders RR, Galbieri R, Fuzatto MG, Cia E (2008) Inheritance of resistance to Verticillium wilt in cotton. Crop Breeding and Applied Biotechnology 8 (4): 265-270

Marshall M, Moxon S, Sonnhammer E L, Studholme DJ, Yeats C, Eddy S R (2004) The Pfam protein families database. Nucleic Acids Res 32: 138-141; doi: 10.1093/nar/gkh121

Nadeau JA, Sack FD (2002) Control of stomatal distribution on the Arabidopsis leaf surface. Science 296 (5573): 1697–1700; doi: 10.1126/science.1069596

Ron M, Avni A (2004) The receptor for the fungal elicitor ethylene-inducing xylanase is a member of a resistance-like gene family in tomato. Plant Cell 16 (6): 1604–1615; doi: 10.1105/tpc.022475

Saitou N, Nei N (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4(4): 406-25

Taguchi-Shiobara F, Yuan Z, Hake S, Jackson D (2001) The fascinated ear2 gene encodes a leucine-rich repeat receptor-like protein that regulates shoot meristem proliferation in maize. Genes and Development 15 (20): 2755–2766; doi: 10.1101/gad.208501

Takken FLW, Schipper D, Nijkamp HJJ, Hille J (1998) Identification and Ds-tagged isolation of a new gene at the Cf-4 locus of tomato involved in disease resistance to Cladosporium fulvum race 5. Plant Journal 14 (4):401-411

Thomas CM, Jones DA, Parniske M, Harrison K, BalintKurti PJ, Hatzixanthis K, Jones JDG (1997) Characterization of the tomato Cf-4 gene for resistance to Cladosporium fulvum identifies sequences that determine recognitional specificity in Cf-4 and Cf-9. Plant Cell 9 (12): 2209–2224

Wang G, Ellendorff U, Kemp B, Mansfield JW, Forsyth A, Mitchell K, Bastas K, Liu CM, Woods-Tor E, Zipfel C, de Wit PJGM, Jones JDG, Mahmut T, Thomma BPHJ (2008) A genome-wide functional investigation into the roles of receptor-like proteins in Arabidopsis. Plant Physiology 147 (2): 503–517; doi: 10.​1104/​pp.​108.​119487

Wang G, Fiers M, Ellendorff U, Wang Z, de Wit PJGM, Angenent G , Thomma BPHJ (2010) The diverse roles of extracellular leucine-rich repeat-containing receptor-like proteins in plants. Critical Reviews in Plant Science 29 (5): 285–299; doi: 10.1080/07352689.2010.502082

Yang M, Sack FD (1995) The too many mouths and four lips mutations affect stomatal production in Arabidopsis. Plant Cell 7 (12): 2227–2239; doi: 10.​1105/​tpc.​7.​12.​2227




Copyright (c) 2017 Biotecnología Vegetal

Biotecnología Vegetal eISSN 2074-8647, RNPS: 2154. ISSN 1609-1841, RNPS: 0397 Editada por: Instituto de Biotecnología de las Plantas. Universidad Central Marta Abreu de Las Villas. Carretera a Camajuaní km 5.5, Santa Clara, Villa Clara, Cuba CP 54 830 Tel: 53 42200124, e-mail: info@ibp.co.cu

Licencia Creative Commons
Biotecnología Vegetal
está bajo una Licencia Creative Commons Atribución-NoComercial 4.0 Internacional.