revista.p65

Reseña

Biotecnología vegetal 1: 3-9, enero-abril 2001

Fisiología del cultivo in vitro

Maria Jesús Cañal*, Roberto Rodríguez, Belén Fernández, Ricardo Sánchez-Tames y Juan Pedro Majada. *Autor para correspondencia

Lab. Fisiología Vegetal, Dpto B.O.S., C/ Catedrático Rodrígo Uría s/n 33071, Universidad de Oviedo, España.

RESUMEN

En los procedimientos de cultivo descritos hasta la década de los ochenta, no se hace ninguna referencia al control ambiental en el desarrollo de las plantas in vitro. Sin embargo, las tasas de crecimiento, desarrollo y muchas de las características fisiológicas y morfológicas de las plantas formadas in vitro están influenciadas por el ambiente físico, químico y gaseoso de los recipientes. El incremento de conocimientos acerca del control ambiental del cultivo de tejidos en condiciones estériles, está provocando una evolución de las distintas técnicas empleadas en la micropropagación de plantas. El ambiente in vitro en recipientes con baja tasa de ventilación presenta unas tasas bajas de flujo de materia y energía, con mínimas variaciones de temperatura, elevada humedad relativa y grandes cambios diarios de la concentración de CO2 en el interior de los recipientes. El tipo de recipiente de cultivo (tamaño, forma, material y sistema de cierre) puede condicionar la evolución de la composición gaseosa en su interior durante el período de cultivo. Ante los distintos factores de estrés que tienen que soportar durante las fases de la micropropagación las plantas producidas en recipientes con nulo o escaso intercambio gaseoso, pueden manifestar alteraciones o déficit en cuanto a su estructura anatómica, morfológica y fisiológica. Como consecuencia, estas plantas presentan un fenotipo incapaz de sobrevivir al transplante directo al invernadero o campo. Actualmente se pueden utilizar diferentes métodos para controlar el ambiente en las distintas fases de la micropropagación, ya sean cultivos heterótrofos, mixótrofos o autótrofos. La elección de la mejor estrategia va a depender de varios factores, destacando la especie, el número de transplantes requerido y la relación calidad precio entre otros.

Palabras clave: ambiente in vitro, características fisiológicas, control ambiental, cultivo de tejidos, micropropagación

ABSTRACT

The culture procedures described up to the eighties, did not made any mention to the environmental control of in vitro plant development. However, growth rate, development and many of the physiologic-morphologic features of the in vitro grown plants are influenced by the culture vessel. The increasing knowledge about the environmental control of culture vessels under sterile conditions, is helping to change micorpropagation procedures. The in vitro environment with lower rate ventilation, brings about low flow rates of matter and energy, with minimum variations of temperature, high relative humidity and large daily changes of the concentration of CO2 inside the culture vessel. The type of culture vessel (size, shape, fabric and closing system) can influence the evolution of the atmosphere along the time of culture. Although submitted to different stresses factors plant can be grown in vitro, but plants can be faulty in their anatomy, morphology and physiology. As a consequence, these plants shown a phenotype unable to survive to ex vitro conditions. Different strategies can be used to control the atmosphere along the different phases of micropropagation, in heterotrophic, mixotrophic or autotrophic cultures. The election of the best strategy will be based on different factors as species, number of transplantes required, or quality-price relationship.

enviromental control, tissue culture, micropropagation

Keywords: in vitro enviromental, characteristic physiology,

INTRODUCCIÓN

La micropropagación es una técnica, desarrollada para la producción en masa de plantas, que ha sido utilizada con éxito desde los años 60. La principal ventaja de esta técnica estriba en la multiplicación rápida de material clonal libre de enfermedades. Esta característica ha servido para introducir rápidamente en el mercado nuevas variedades de plantas obtenidas mediante selección, mutación, programas de mejora o manipulación genética. Sin embargo, la industria de la micropropagación presenta serias limitaciones debido a los elevados costes de producción, reduciéndose la mayor parte de su actividad al sector de plantas ornamentales (Holdgate y Zandvoort, 1992).

En la mayor parte de los procedimientos empleados actualmente no se hace referencia al control efectivo del desarrollo de las plantas in vitro. Sin embargo, las tasas de crecimiento, desarrollo y muchas de las características fisiológicas y morfológicas de las plantas formadas in vitro están influenciadas por el ambiente físico, químico y gaseoso de los recipientes (Kozai et al., 1992a; Buddenford-Joosten y Woltering, 1994). Por tanto el estudio y control del ambiente de los cultivos también incidirá positivamamente en la optimización de los procedimientos de micropropagación.

Características del ambiente in vitro en la micropropagación convencional

Tradicionalmente los protocolos de propagación han ignorado los factores ambientales del cultivo, centrándose en experimentos factoriales de aplicación exógena de nutrientes y reguladores del crecimiento. En estas condiciones las plantas se desarrollan en condiciones asépticas dentro de un recipiente hermético, expuestas a bajos niveles de luz, sobre un medio gelificado que contiene nutrientes para mantener un crecimiento heterótrofo, y todo ello bajo unas condiciones de elevada humedad relativa.

Los factores que pueden afectar al crecimiento y morfogénesis de las plantas in vitro se pueden clasificar como se indica en la figura 1. Los fenómenos que controlan los cambios ambientales en el interior de un recipiente de cultivo son similares a los que ocurren en el interior de un invernadero, ya que de hecho un recipiente de cultivo es, hasta cierto punto, un invernadero en miniatura mantenido en condiciones asépticas. Bajo este punto de vista, Kozai et al. (1992a) mantienen que es interesante realizar estudios ecológicos, ecofisiológicos y de fisiología e ingeniería ambiental en el proceso de micropropagación. Aunque el valor que presenta cada uno de los parámetros descritos en la figura 1, va a depender de las condiciones de la cámara de crecimiento, del recipiente, de las condiciones de cultivo y de los propios explantos, el ambiente in vitro presenta unas características generales que se resumen en la (Tabla 1). Como se puede observar, el ambiente in vitro presenta unas tasas bajas de flujo y energía, debido a la existencia de un sistema semicerrado, con mínimas variaciones de temperatura, elevada humedad relativa y grandes cambios diarios de la concentración de CO2 en el interior de los recipientes.

Características de ambiente aéreo en el interior de los recipientes

El tipo de recipiente de cultivo (tamaño, forma, material y sistema de cierre) puede condicionar la evolución de la composición gaseosa en su interior durante el cultivo. En recipientes de cultivo cerrados herméticamente se ha detectado una acumulación de gases (dióxido de carbono -CO2, etileno -C2H4-, etano, etanol y acetaldehído) que, además de influir o controlar el crecimiento, también pueden afectar a procesos de diferenciación y morfogénesis (Thomas y Murashige, 1979; Righetti et al., 1990).

Para mantener un crecimiento heterótrofo en estos recipientes, es necesaria una fuente exógena de hidratos de carbono, ya que la concentración de CO2 durante el período luminoso está por debajo del punto de compensación (50-100 mmol. mol-1) (Ando, 1978; Fujiwara et al., 1987; Pospisilova et al., 1988; Desjardins et al., 1988; Infante et al., 1989; Kozai y Sekimoto, 1988). La concentración de CO2 aumenta de forma constante durante el período oscuro, aunque una vez reiniciado el período luminoso, el nivel de CO2 desciende rápidamente (Fujiwara et al., 1987; Fujiwara y Kozai, 1995). En estas condiciones, la falta de CO2 disminuye los requerimientos lumínicos de los cultivos, siendo más importante su papel en fotomorfogénesis que en fotosíntesis. Además, generalmente los gradientes de potencial hídrico y los coeficientes de difusión del aire y del medio en el recipiente son más pequeños que los existentes en el exterior, lo que genera bajas tasas de flujo de agua en el recipiente (Sallanon y Coudret, 1990). La introducción de filtros bacteriológicos en los recipientes de cultivo permite aumentar la tasa de intercambio gaseoso y mantener gradientes de humedad que han introducido nuevos parámetros a considerar en los procesos morfogénicos (Majada et al., 1997).

Característica del ambiente en los sustratos

Para estudiar la disponibilidad de agua, nutrientes y reguladores de desarrollo en los distintos sustratos empleados en el cultivo de tejidos, debemos de tener en cuenta los diferentes componentes del potencial hídrico (Debergh et al., 1981, Debergh, 1983) y otros tres factores de especial relevancia en sustratos gelificados: la dinánica de flujo, la velocidad de difusión de solutos y la influencia de la temperatura (Campbell y Cheftel, 1985).

A.   Agar

Distintos autores han estudiado el efecto de la concentración y marca comercial de agar, así como el comportamiento de las distintas especies ante el tipo de agar y su concentración (Debergh, 1983; Bornman y Vogelmann, 1984; Kordan, 1988; Leshem, 1983 y Scherer, 1988), pero no se encontró una correlación entre las características y el crecimiento de las plantas.

B. Nutrientes y reguladores

La definición de protocolos para la micropropagación heterótrofa de plantas, se ha basado en experimentos factoriales de aplicación exógena de nutrientes y reguladores del crecimiento (Williams, 1992; Williams y Taji, 1991). Este hecho explica la gran cantidad de medios existentes, definidos específicamente para cada especie y tipo de explante empleado. Estos factores, junto al empleo de sustratos gelificados, han influido negativamente en la realización de trabajos que analicen el efecto del balance iónico y de la concentración total de iones y reguladores en la absorción y asimilación de nutrientes (George y Sherrington, 1984).

Aunque los medios nutritivos empleados en la micropropagación convencional han sido optimizados para cultivos heterótrofos, en la actualidad se trabaja para definir nuevas formulaciones adaptadas a las posibilidades de control ambiental existentes en la actualidad, investigando previamente el control y la eficiencia de la absorción de nutrientes bajo distintas condiciones ambientales (Kozai et al., 1992a). Resultados obtenidos en nuestro laboratorio ponen de manifiesto que el consumo de nutrientes es muy inferior al esperado, siendo únicamente significativo en el caso del fosfato, que puede llegar a ser limitante en algunos cultivos (Dantas et al., 1999 y Moncaleán et al., 1999). A partir del análisis de nuestros resultados y de los obtenidos por otros autores (Williams, 1992 y Leifert et al., 1995) parece claro que la composición y la concentración mineral de los medios de cultivo, así como el ambiente del cultivo condiciona totalmente la respuesta de los cultivos en cuanto a crecimiento y características fisiológicas de las plantas obtenidas; lo cual está condicionando la definición de nuevos medios de cultivo aplicados de forma estática o de forma dinámica durante el transcurso de cada período de cultivo.

Al igual que en el medio mineral, de forma general los protocolos de aplicación de reguladores del crecimiento se establecen mediante ensayos factoriales, manteniendo los cultivos en contacto con la hormona durante todo el subcultivo. Sin embargo, resultados obtenidos en nuestro laboratorio ponen de manifiesto que la absorción de hormonas en la fase de proliferación se produce mayoritariamente en las primeras horas de cultivo (Feito et al., 1994; Feito et al., 1995; Moncaleán et al., 1999), absorción que condiciona totalmente la respuesta morfogénica de los cultivos mediante la alteración del balance endógeno de reguladores del crecimiento (Dantas et al., 1997). En este sentido ensayos realizados en nuestro laboratorio, ponen de manifiesto que la administración de pulsos hormonales durante períodos cortos es más efectiva en la proliferación de yemas axilares y lo que resulta más interesante, favorece el posterior enraizamiento de los tallos obtenidos.

Respuestas de tallos/plántulas al ambiente in vitro

En la tabla 2 se resumen algunas de las respuestas más habituales de los explantos introducidos en cultivo, como resultado de la interacción que se produce entre los explantos y las características ambientales descritas. Resultados obtenidos en nuestro laboratorio han demostrado que la manipulación del ambiente en los recipientes de cultivo, modula las características morfo-anatómicas y fisiológicas de las plantas obtenidas a través de cultivo de tejidos (Majada et al., 1998, Majada et al., 1999). De forma general podríamos decir que el fenotipo inducido por las condiciones de cultivo es intermedio entre plantas crecidas en ambientes herméticos no controlados y plantas aclimatadas.

Estrategias en el control ambiental de los recipientes

Como consecuencia del ambiente in vitro, todos los factores descritos en la tabla 2, contribuyen al desarrollo de plantas con un fenotipo incapaz de sobrevivir al transplante a invernadero o campo (Preece y Sutter, 1991), debido al estrés hídrico provocado por la ausencia de regulación estomática (Brainerd y Fuchigami, 1982; Conner y Conner, 1984; Ziv et al., 1987; Pospisilova et al., 1988) y menor cantidad de ceras epicuticulares (Sutter y Langhams, 1979, 1982; Sutter, 1988; Conner y Conner, 1984).

Actualmente disponemos de distintas estrategias para controlar el ambiente en los sistemas de micropropagación: control en cultivos heterótrofos (a), en cultivos mixótrofos (b) y en cultivos autótrofos (c).

a. El control del ambiente en cultivos heterótrofos (recipientes sin ventilación) se centra en las fases de enraizamiento y aclimatación. El ambiente puede ser modificado gradualmente en estas etapas para favorecer posteriormente el crecimiento y desarrollo de tallos y plantas en invernadero. Aunque ampliamente utilizada por los micropropagadores convencionales, las posibilidades de control son mínimas y se limita generalmente a una disminución de la humedad relativa.

b.  Establecimiento de cadenas cicloclonales de micropropagación mixótrofa, las cuales se sustentan en una mezcla de nutrición heterótrofa y autótrofa (recipientes con ventilación), y que va a depender de la disponibilidad de CO2 y azúcares por los explantos en el recipiente de cultivo.

c.  La tercera estrategia alternativa la constituye el control del ambiente para mantener un crecimiento autótrofo (recipientes con ventilación y control de dióxido de carbono) aséptico en las fases de multiplicación y enraizamiento.

La elección de la mejor estrategia va a depender de los objetivos específicos de producción, así como de los requerimientos culturales de cada especie, número de transplantes requerido, valor añadido del producto, relación calidad precio, etc.

REFERENCIAS

Aitken-Christie, J, Davies H, Kubota H y Kozai T (1990) Benefits of using a microporous membrane in the tissue culture vessel lid for the micropropagation of Pinus radiata. VIIth IAPTC Congress, Amsterdam

Ando, T (1978) Gaseous environment in the airtight culture vessel containing orchids. Abst Annual Autumm Meet. Jap.Soc. 368-369

Blazkova, A, Ullmann J, Josefusova Z, Machackova I y Krekule J (1989) The influence of gaseous phase on growth on plants in vitro - The effect of differents types of stoppers. Acta Hort 251:209-214

Brainerd, K E y Fuchigami L H (1982) Stomatal functioning of in vitro and greenhouse apple leaves in darkness, manitol, ABA, and CO2. J. Exp. Bot. 33:388-392

Bornman, CH y Vogelman TC (1984) Effect of rigidity of gel medium on benzyladenine-induced adventitious bud formation and vitrification in vitro in Picea abies. Physiol. Plant. 61:502-512

Boyer, JS (1989) Water potential and plant metabolism: comments on Dr P.J.Kramer’s article ‘Changing concepts regarding plant water relations’. Plant Cell Environ. 11:565-568

Buddenford-Joosten, JMC y Woltering EJ (1994) Components of the gaseous environment and their effects on plant growth and development in vitro. Plant Growth Reg. 15:1-16

Campbell, GS y Cheftel JC (1985) Diffusivity of sorbic acid in food gels at high and intermediate water activities. En: Simatos D y Multon JL, eds. Properties of water in foods gels in relation and stability. Martinus Nijhoff, Dordrecht, pp. 343-356

Conner LN y Conner AJ (1984) Comparative water loss from leaves of Solanum laciniatum plants cultured in vitro and in vivo. Plant Sci. Let 36:241-246

Cournac, L, Dimon B, Carrier P, Lohou P y Chavgardieff P

(1991) Growth and photosynthetic characteristics of Solanum tuberosum planlets cultured in vitro in different conditions of aearation, sucrose supply and CO2 enrichment. Plant Phisiol. 97:112-117

Cuello, JL, Walker PN y Heuser CW (1992) Controlled in vitro environment for stage II in micropropagation of Chrysanthemum. ASAE, 35:1079-1083

Dantas, KA, Cañal MJ, Centeno ML, Feito I y Fernández B (1997) Endogenous plant growth regulators in carnation tissue cultures under different conditions of ventilation. Plant Growth Regul. 22:169-174

Dantas, KA, Majada JP, Fernández B y Cañal MJ (1999) Mineral nutrition in carnation tissue cultures under different conditions of ventilation. Plant Cell Reports 00:000-000

Davies, H, Hobbs J, Kroese H, Fiedler J y Aitken-Christie J

(1992)  Measurement of CO2 concentration in tissue culture

vessels for sugar-free micropropagation and climate change studies. Acta Hort. 319:279-284

Debergh, PC (1983) Effects of agar brand and concentration on the tissue culture medium. Physiol. Plant. 59:270-276

Debergh, PC, Aitken-Christie J, Cohen J, Grout DB, von Arnold S, Zimmerman R y Ziv M (1992) Reconsideration of the term ‘vitrification’ as used in micropropagation. Plant Cell Tiss. Org. Cult. 30:135-140

Debergh, P, Harbaoui Y, Lemeur R (1981) Mass propagation of globe artichoke (Cynara scolymus): Evaluation of different hypothesis to overcome vitrification with special reference to water potential. Physiol. Plant. 52:181-187

Dillen, W y Buysens S (1989) A simple technique to overcome vitrification in Gypsophila paniculata L. Plant Cell Tiss. Org. Cult. 19:181-188

Feito, I, Rodríguez A, Centeno ML, Sánchez-Tamés R y Fernández B (1994) Effect of the physical nature of the culture medium on the metabolism of benzyladenine and endogenous cytokinins in Actinidia deliciosa tissues culture in vitro. Physiol. Plant. 95:449-453

Feito, I, Rodríguez A, Centeno ML, Sánchez-Tamés R y Fernández B (1995) Effect of applied benzyladenine on endogenous cytokinin content during the early stages of bud development of kiwifruit. Physiol. Plant. 95:241-246

Fujiwara, KT, Kozai y Watanabe I (1987) Fundamental studies on environment in plant tissue cultured Vitis rupestris plantlets. J. Agric. Meteorol. 43: 21-30

Fujiwara, K y Lozai, T (1995) Physical microenvironment and its effects. En: Kurata, K. y Kozai. Transplant Production Systems. pp.319-369 Kluwer Academic Publisher, Dordrecht.

Galzy, R y Compan D (1992) Remarks on mixotrophic and autotrophic carbon nutrition of Vitis plantlets cultured in vitro. Plant Cell Tiss. Org. Cult. 31:239-244 pp.

George, EF y Sherrington PD (1984) Plant propagation by tissue culture. Handbook and directory of commercial laboratories. Exegetics Limited, Hants, UK

Ghashghaie, J, Brenckmann F y Saugier B (1991) Effects of agar concentration on water status and growth of rose plants cultured in vitro. Physiol. Plant., 82:73-78

Hakkaart, FA y Versluijs JMA (1983) Some factors affecting glassiness in carnation meristem tip cultures. Neth. J. Plant. Path. 89:47-53

Hayashi, M, Fujita N, Kitaya Y y Kozai T (1992) Effect of sideward lighting on the growth of potato plantlets in vitro. Acta Hort. 319:163-170

Holdgate, DP y Zandvoort EA (1992) Automated micropropagation and the application of a laser beam for cutting. En: Kurata K. y Kozai T, Transplant production systems pp.297-231. Kluwer Academic Publishers, Dordrecht

Honjo, T y Takakura T (1987) Effects of CO2 concentration, light intensity and liquid medium composition for the growth of Cymbidium PLB in vitro. J. Agric. Metereol. 43:223-227

Infante, R, Magnanini E y Righetti B (1989) The role of light and CO2 in optimmizing the conditions for shoot proliferation of Actinidia deliciosa in vitro. Physiol. Plant. 77:191-195

8

Jackson, MB, Abbott AJ Belcher AR y Hall KC (1987) Gas exchange in plant tissue cultures. En: M.B. Jackson, S.H. Mantell and J. Blake. Advances in the chemical manipulation of plant tissue cultures. Proc.Meet.British Plant Growth Regulator Group. London, pp. 57-71

Jackson, MB, Abbott AJ, Belchet AR, Hall KC y Cameron J (1991) Ventilation in plant tissue cultures and effects of poor aeration on ethylene and carbon dioxide accumulation, oxygen depletion and explant development. Ann. Bot. 67:229-237

Kitaya, Y y Kozai T (1995) Visualization and analysis of air current patterns in the plant tissue culture vessel as affected by radiation flux, plantlet size and vessel type. ASAE Paper 957198, ASAE, St. Joseph, MI

Kordan, H (1988) Inorganic ions present in commercial agar. Biochem. Physiol. Pflanz. 183:355-359

Kozai, T, Fujiwara K y Watanabe I (1986) Fundamental studies on environments in plant tissue culture vessels. Effects of stoppers and vessels on gas exchange rates between inside and outside of vessels closed with stoppers. J. Agr. Met. 42:119-127

Kozai, T e Iwanami Y (1988) Effects of CO enrichment and sucrose concentration under high photon fl2uxes on plantlet growth of carnation (Dianthus caryophyllus L.) in tissue culture during the preparation stage. J. Japan. Soc. Hort. Sci. 57:279-288

Kozai, T, Koyama Y y Watanabe C (1988) Multiplication of potato plantlets in vitro with sugar free medium under high photosynthetic photon flux. Acta Hort. 230:121-127

Kozai, T y Sekimoto K (1988) Effects of the number of air exchanges per hour of the closed vessel and the photosynthetic photon flux on the carbon dioxide concentration inside the vessel and the growth of strawberry plantlets in vitro. Environ. Control Biol. 26:21-29

Kozai, T, Takazawa I, Watanabe I y Sugi J (1990) Growth of tobacco seedlings and plantlets in vitro as affected by in vitro environment. Environ. Control Biol. 28:31-39

Kozai, T, Hayashi M y Ochiai M (1991) Effect of the sidewards lighting on the growth and morphogenesis of potato plantlets in vitro. J. Jap. Soc. Hort. Sci. 60:228-229

Kozai, T, Fujiwara M, Hayashi M y Aitken-Christie J (1992a). The in vitro environment and its control in micropropagation. En: Kurata, K. y Kozai. Transplant Production Systems, pp. 247-282. Kluwer Academic Publisher, Dordrecht

Kozai, T, Oki H y Fujiwara K (1922b) Photosynthetic characteristics of Cymbidium plantlet in vitro. Plant Cell Tiss. Org. Cult. 22:205-211

Kubota, C, Fujiwara K, Kitaya Y y Kozai T (1997) Recent advances in environment control in micropropagation. En: Goyo, Plant Production in Closed Ecosystems. pp. 153-169 Kluwer Academic, Dordrecht

Labaume, MP, Viemont J-D y Beaujard F (1989) Evolution morphogénetique de la bouture de Rhododendron cultivée in vitro. Influence de la concentration du milieu et de la quantité de gélose. Bull. Soc. Bot. Fr. 136:19-30 (Lettres.Bot.)

Leshem, B (1983) Growth of carnation meristems in vitro. Anatomical structure of abnormal plantlets and the effect of agar concentration in the medium of their formation. Ann. Bot. 52:413-415

Leifert, C, Murphy K P, Lumsden PJ (1995) Mineral and carbohydrate nutrition of plant cell and tissue cultures Crit Rev Plant Sci 14: 83-109

Lim, LY,Hew YC, Wong SC y Hew CS (1992) Effects of light intensity, sugar and CO2 concentrations on growth and mineral uptake of Dendrobium plantlets. J. Hort. Sci. 67:601-611

Majada, JP, Fal MA y Sánchez-Tames R (1997) The effect of ventilation rate on proliferation and hyperhydricity of Dianthus caryophyllus L. In vitro Cell.Dev.Biol. 33: 66-69

Majada, JP, Feito I, Centeno ML, Fernández B y Sánchez-Tamés R (1998) Plant Growth Regulation 25:113-121

Majada, JP, Tadeo F, Fal MA y Sánchez-Tames R (1999) Impact of culture container ventilation on the anatomy and morphology of micropropagated Dianthus caryophyllus cv. Nelken. Plant Cell Tiss. Org. Cult. (Aceptada)

Mascarehnas, AF, Khuspe SS, Nadgauda RS, Gupta PK y Khan BM (1989) Biotechnological application of plant tissue culture to forestry in India. En: Dhawan, V. Applications of biotechnology in forestry and horticulture, Plenum Press, pp. 73-86 New York

Moncaleán, P,Cañal MJ, Feito I, Rodríguez A y Fernández B (1999) Cytokinins and mineral nutrition in shoots of Actinidia deliciosa cultured in vitro. J. Plant Physiol. (En prensa)

Morini, S, Fortuna R, Sciutti R y Muelo R (1990) Effect of different light-dark cycles on growth of fruit tree shoots cultured in vitro. Adv. Hort. Sci. 4:163-166

Morini, S, Trinci M y Zacchini M (1991) Effect of different photoperiods on in vitro growth of Mr.S.2/5 plum rootstock.Plant Cell Tiss. Org. Cult. 25:141-145

Mosseau, M (1986) CO2 enrichment in vitro. Effect on autotrophic and heterotrophic cultures of Nicotiana tabacum. Photosynthesis Res. 8:187-191

Pospisilova, J, Solarova J, Catsky J, Ondrej M y Opatrny Z (1988) The photosynthetic characteristics during the micropropagation of tobacco and potato plants. Photosynthetica 22:205-213

Preece, JE y Sutter EG (1991) Acclimatization of micropropagated plants to the greenhouse and field. En: Debergh, P.C. y Zimmermanm R.H. eds. Micropropagation: technology and application pp. 71-93 Kluwer Academic Publishers, Dordrecht

Righetti, B, Magnanini E, Infante R y Pedreri S (1990) Ethylene, ethanol, acetaldehyde and carbon dioxide released by Prunus avium shoot cultures. Physiol. Plant. 78:507-510

Sallanon, H y Coudret A (1990) Water fluxes between in vitro plants and atmosphere in micropropagation. C. R. Acad. Sci. Paris, 310:607-613

Scherer, PA (1988) Standardization of plant micropropagation by usage of a liquid medium with polyurethane foam plugs or a solidified medium with the gellan gum gelrite instead of agar. Acta Hort. 226:107-114

Singha, S, Townsend EC y Oberly GH (1985) Mineral nutrient status of crabapple and pear shoots cultured in vitro on varying concentrations of three commercial agars. J. Amer. Soc. Hort. Sci. 110:407-411

9

Sutter, E (1988) Stomatal and cuticular waxes loss from apple, cherry and sweetgum plants after removal from culture. J. Amer. Soc. Hort. Sci. 113:234-238

Sutter, E y Langhans RW (1979) Epicuticular wax formation on carnation plantlets regenerated from shoot tip culture. J. Amer. Soc. Hort. Sci. 104:493-496

Sutter, E y Langhans RW (1982) Formation of epicuticular wax and its effect of water loss in cabbage plants regenerated from shoot-tip culture. Can. J. Bot. 60:2896-2902

Thomas, DDS y Murashige T (1979) Volatile emission of plant tissue culture. I. Identification of the major components. In Vitro 15:654-658

Tsuji, K, Nagaoka M y Oda M (1992) Promotion of the growth of carrot plantlets in vitro by controlling environmental conditions in culture vessels. Acta Hort. 319:279-302

Walker, PN, Heuser VW y Heinemann PH (1988) micropropagation: studies of gaseous environments. Acta Hort. 230:141-145

Williams, RR (1992) Towards a model of mineral nutrition in vitro.

En: Kurata K. y Kozai, T. eds. Transplant production systems. pp. 213-229. Kluwer Academic Publishers, Dordrecht

Williams, RR y Taji AM (1991) Effect of temperature, gel concentration and cytokinins on vitrification of Olearia microdisca (J.M.Black) in vitro shoot cultures. Plant Cell Tiss. Org. Cult. 26:1-6

Yue, D, Gosselin A y Desjardins Y (1993) Effects of forced ventilation at different relative humidities on growth, photosynthesis and transpiration of geranium plantlets in vitro. Can. J. Plant Sci. 73:249-256.

Zimmerman, RH (1984) Application of tissue culture propagation to woody plants. En: Henke RR, Hughes KW, Constantin MJ y Hollaender A, eds. Tissue Culture in Forestry and Agriculture, Plenum Press, New York, pp:165-177.

Ziv, M (1991) Vitrification: morphological and physiological disorders of in vitro plants. En: Debergh, PC y Zimmermanm RH, eds. Micropropagation: tecnology and application. Kluwer Academic Publishers,Dordrecht, pp:45-69.

Ziv, M, Schwarts A y Fleminger D (1987) Malfunctioning stomata in vitreous leaves of carnation (Dianthus caryophyllus) plants propagated in vitro; implications for hardening. Plant Sci. 52:127-134.



Copyright (c) 2016 Biotecnología Vegetal

Biotecnología Vegetal eISSN 2074-8647, RNPS: 2154. ISSN 1609-1841, RNPS: 0397 Editada por: Instituto de Biotecnología de las Plantas. Universidad Central Marta Abreu de Las Villas. Carretera a Camajuaní km 5.5, Santa Clara, Villa Clara, Cuba CP 54 830 Tel: 53 42200124, e-mail: info@ibp.co.cu

Licencia Creative Commons
Biotecnología Vegetal
está bajo una Licencia Creative Commons Atribución-NoComercial 4.0 Internacional.