La maltosa en los medios de cultivo mejora la regeneración in vitro de plantas de Urochloa brizantha cv. 'Marandu'

Alyne Valéria Carrion Pereira, Luciana Midori Takamori, Diliane Harumi Yaguinuma, Adriana Mendonça de Oliveira, Alessandra Ferreira Ribas

Resumen


RESUMEN

 

La mejora de la regeneración in vitro de Urochloa brizantha es un paso importante hacia el desarrollo de cultivares transgénicos. El objetivo de este trabajo fue evaluar el efecto del aminoácido prolina y el reemplazo de sacarosa por maltosa como fuente de carbono en medios de cultivo para optimizar la embriogénesis somática. Semillas maduras de U. brizantha cv. 'Marandu' fueron utilizados como explante inicial. Las semillas fueron escarificadas en ácido sulfúrico, peladas manualmente, desinfectadas y lavadas. Los medios de cultivo para la formación de callos estuvieron compuestos básicamente por sales de Murashige y Skoog con 30 g l-1 de sacarosa, 3 mg l-1 de ácido 2,4-diclorofenoxi acético, 300 mg l-1 de caseína hidrolizada y 8 g l-1 de agar. Se añadieron fuentes de carbono maltosa o sacarosa a 30, 40 y 50 g l-1 en el medio de cultivo de formación de callos. En otro experimento, se añadió L-prolina a los medios de cultivo a 100, 200 y 400 mg l-1. Se evaluó el número de semillas que produjeron callos, el crecimiento de callos después de 14 semanas (mg) y el número de plantas regeneradas. Los resultados mostraron que la maltosa era más eficiente que la sacarosa para regenerar las plantas. La adición de prolina a los medios de cultivo no lo mejoró. Por lo tanto, la sustitución de sacarosa por maltosa en los medios de cultivo in vitro de U. brizantha aumenta la regeneración de las plantas.

 



Palabras clave


braquiaria; fuente de carbono; embriogénesis somática

Texto completo:

PDF (English) HTML (English)

Referencias


Abdelsalam A, Chowdhury K, El-Bakry A (2018) Efficient adventitious morphogenesis from in vitro Cultures of the medicinal plant Cymbopogon schoenanthus. Plant tissue Cult & Biotechnology 28(2): 147-160; doi: 10.3329/ptcb.v28i2.39674

Ahn CH, Tull AR, Montello PM, Merkle SA (2017) A clonal propagation system for Atlantic white cedar (Chamaecyparis thyoides) via somatic embryogenesis without the use of plant growth regulators. Plant Cell Tissue Organ Culture 130: 91–101; doi: 10.1007/s11240-017-1206-7

Asif M, Eudes F, Goyal A, Amundsen E, Randhawa H, Spanner D (2013) Organelle antioxidants improve microspore embryogenesis in wheat and triticale. In vitro Cell Development Biology Plant 49: 489–497; doi: 10.1007/s11627-013-9514-z

Bach TMH, Takagi H (2013) Properties, metabolisms, and applications of L-proline analogues. Applied Microbiology Biotechnology 97: 6623–6634; doi: 10.1007/s00253-013-5022-7

Cabral GB, Carneiro VTC, Gomes ACMM, Lacerda AL, Martinelli AP, Dusi DMA (2018) Genetic transformation of Brachiaria brizantha cv. 'Marandu' by biolistics. Anais da Academia Brasileira de Ciências 90(2): 1789-1797; doi: 10.1590/0001-3765201820170842

Ceasar SA, Ignacimuthu S (2010) Effects of cytokinins, carbohydrates and amino acids on induction and maturation of somatic embryos in kodo millet (Paspalum scorbiculatum linn.). Plant cell, tissue and organ culture 102(2): 153-162; doi: 10.1007/s11240-010-9716-6

Dias MI, Sousa MJ, Alves RC, Ferreira ICFR (2016) Exploring plant tissue culture to improve the production of phenolic compounds: A review. Industrial Crops and Products 82: 9–22; doi: 10.1016/j.indcrop.2015.12.016

Encina CL, Parisi A, O’Brien C, Mitter N (2014) Enhancing somatic embryogenesis in avocado (Persea americana Mill.) using a two-step culture system and including glutamine in theculture medium. Scientia Horticulturae 165: 44–50; doi: 10.1016/j.scienta.2013.10.019

Ferreira DF (2011) Sisvar: a computer statistical analysis system. Ciência e Agrotecnologia 35(6): 1039-1042; doi: 10.1590/S1413-70542011000600001

Hiei Y, Ishida Y, Komari T (2014) Progress of cereal transformation technology mediated by Agrobacterium tumefaciens. Frontiers in Plant Science 7(5): 628; doi: 10.3389/fpls.2014.00628

IBGE (2016) Instituto Brasileiro de Geografia e Estatística Produção da pecuária municipal. Available in: https://biblioteca.ibge.gov.br/visualização/periodicos/84/ppm_2016_v44_br.pdf. Accessed 30/09/2018

Joyia FA, Khan MS (2013) Scutellum-derived callus-based efficient and reproducible regeneration system for elite varieties of indica rice in Pakistan. International Journal of Agriculture & Biology 15(1): 27–33

Juturu VN, Mekala GK, Kirti PB (2015) Current status of tissue culture and genetic transformation research in cotton (Gossypium spp.) Plant cell tissue Organ Culture 120: 813–839; doi: 10.1007/s11240-014-0640-z

Kaur R, Kapoor M (2016) Plant regeneration through somatic embryogenesis in sugarcane. Sugar Tech 18(1): 93–99; doi: 10.1007/s12355-015-0380-3

Kishor PBK, Kumari PH, Sunita MS, Sreenivasulu N (2015) Role of proline in cell wall synthesis and plant development and its implications in plant. Frontiers in Plant Science 20(6): 544; doi:10.3389/fpls.2015.00544

Kumar GP, Subiramani S, Govindarajan S, Sadasivam V, Manickam V, Mogilicherla K, Kumas S, Thiruppathi K, Narayanasamy J (2015) Evaluation of different carbon sources for high frequency callus culture with reduced phenolic secretion in cotton (Gossypium hirsutum l.) cv. Svpr-2. Biotechnology Reports 7: 72-80; doi: 10.1016/j.btre.2015.05.005

Malik K, Birla D, Yadav H, Sainger M, Chaudhary D, Jaiwal PK (2017) Evaluation of carbon sources, gelling agents, growth hormones and additives for efficient callus induction and plant regeneration in indian wheat (Triticum aestivum L.) genotypes using mature embryos. Journal of Crop Science Biotechnology 20: 185-192; doi: 10.1007/s12892-017-0046-0

Murashige T, Skoog FA (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiologia Plantarum 15(3): 473-497; doi: 10.1111/j.1399-3054.1962.tb08052.x

Pantha P, Ponniah SK, Ntamatungiro S, Manoharan M (2016) Improved embryogenic callus induction and plant regeneration in big bluestem (Andropogon gerardii Vitman), a potential bioenergy feedstock. African Journal of Biotechnology 15(39): 2166-2171; doi: 10.5897/ajb2016.15542

Patel M, Dewey RE, Qu R (2013) Enhancing Agrobacterium tumefaciens-mediated transformation efficiency of perennial ryegrass and rice using heat and high maltose treatments during bacterial infection. Plant cell, tissue and organ culture (PCTOC) 114(1): 19-29; doi: 10.1007/s11240-013-0301-7

Pullman GS, Bucalo K (2014) Pine somatic embryogenesis: analyses of seed tissue and medium to improve protocol development. New Forest 45: 353–377; doi: 10.1007/s11056-14-9407-y

Ren JP, Wang XG, Jun YIN (2010) Dicamba and sugar effects on callus induction and plant regeneration from mature embryo culture of wheat. Agricultural Sciences in China 9(1): 31-37; doi: 10.1016/S1671-2927(09)60064-X

Shimomae K, Chin DP, Khan RS, Mii M (2013) Efficient plant regeneration system from seed-derived callus of ravenna grass (Erianthus ravennae (l.) Beauv.). Plant biotechnology 30(5): 473-478; doi: 10.5511/plantbiotechnology.13.0721a

Soreng RJ, Peterson PM, Romaschenko K, Davidse G, Teisher JK, Clark LG, Barbera P, Gillespie LJ, Zuloaga FO (2017) A worldwide phylogenetic classification of the Poaceae (Gramineae) ii: An update and a comparison of two 2015 classifications. Journal of Systematics and Evolution 55(4): 259–290; doi: 10.1111/jse.12262

Takamori LM, Machado Neto NB, Vieira LGE, Ribas AF (2015) Optimization of somatic embryogenesis and in vitro plant regeneration of Urochloa species using Picloram. In Vitro Cell Developmental Biology Plant 51(5): 554-563; doi: 10.1007/s11627-015-9701-1

Varis S, Krystyna Klimaszewska K, Aronen T (2018) Somatic embryogenesis and plant regeneration from primordial shoot explants of Picea abies (L.) H. Karst. somatic trees Frontiers in Plant Science 9: 1551; doi: 10.3389/fpls.2018.01551

Yaguinuma DH, Takamori LM, Oliveira AM, Vieira LGE, Ribas AF (2018) In vitro regeneration from leaf-base segments in three genotypes of Urochloa spp. Crop & Pasture Science 69: 527-34; doi: 10.1071/CP17395

Zhao L, Liu S, Song S (2010) Optimization of callus induction and plant regeneration from germinating seeds of sweet sorghum (Sorghum bicolor Moench). African Journal of Biotechnology 9(16): 2367-2374




Copyright (c) 2019 Biotecnología Vegetal

Biotecnología Vegetal eISSN 2074-8647, RNPS: 2154. ISSN 1609-1841, RNPS: 0397 Editada por: Instituto de Biotecnología de las Plantas. Universidad Central Marta Abreu de Las Villas. Carretera a Camajuaní km 5.5, Santa Clara, Villa Clara, Cuba CP 54 830 Tel: 53 42200124, e-mail: info@ibp.co.cu

Licencia Creative Commons
Biotecnología Vegetal
está bajo una Licencia Creative Commons Atribución-NoComercial 4.0 Internacional.