Inducción de respuestas defensivas en caña de azúcar frente a Sugarcane mosaic virus con dos bioproductos

José Alberto De la Fé Isaac, Yaquelin Puchades Izaguirre, María La O Hechavarría, María de los Ángeles Zardón Navarro, Ariel Arencibia Rodríguez

Resumen


La caña de azúcar (Saccharum spp.), principal cultivo azucarero a nivel mundial, es afectada por múltiples agentes patógenos. Una de las enfermedades virales más importantes en este cultivo es el mosaico, causado por Sugarcane mosaic virus (SCMV). Esta investigación se realizó con el objetivo de demostrar la capacidad de dos bioproductos para inducir una respuesta de defensa contra este virus. El primero basado en la encapsulación de la enzima endopoligalacturonasa de la levadura Kluyveromyces marxianus CCEBI 2011 y otro cuyo principio activo está constituido por compuestos fenólicos producidos por caña de azúcar en biorreactores de inmersión temporal. Los cultivares SP70-1284 susceptible al SCMV y C323-68 resistente, fueron tratados con los bioproductos e inoculados con SCMV. Se evaluó la severidad de la infección, la acumulación de radicales superóxido y la expresión de 10 genes relacionados con la defensa. El cultivar resistente no presentó síntomas de infección durante el desarrollo del experimento, mientras que en el susceptible la aplicación de ambos bioproductos disminuyó la severidad de la infección entre 38.9 y 44.4% con respecto al control. Se observó la presencia de radicales superóxido en las primeras horas de interacción caña de azúcar – SCMV, mientras que a los 28 días post inoculación, se apreció una expresión diferenciada de tres genes relacionados con la defensa antiviral. Se demostró la capacidad de ambos bioproductos para inducir respuestas defensivas en caña de azúcar contra el SCMV.

Palabras clave


elicitor, endopoligalacturonasa, fenoles, genes R

Texto completo:

PDF HTML

Referencias


Arencibia A, Bernal A, Yang L, Cortegaza L (2008) New role of phenylpropanoid compounds during sugarcane micropropagation in Temporary Inmersion Bioreactors (TIBs). Plant Science 175: 487-496; doi: 10.1016/j.plantsci.2008.05.024

Arencibia A, Bernal A, Zayas C, Carmona E (2012) Hydrogen peroxide induced phenylpropanoids pathway eliciting a defensive response in plants micropropagated in Temporary Immersion Bioreactors (TIBs). Plant Science 195: 71-79; doi: 10.1016/j.plantsci.2012.06.016

Ashwin NMR, Barnabas L, Sundar AR, Malathi P (2018) CfPDIP1, a novel secreted protein of Colletotrichum falcatum, elicits defense responses in sugarcane and triggers hypersensitive response in tobacco. Applied Microbiology and Biotechnology 102(14): 6001-6021; doi: 10.1007/s00253-018-9009-2

Chalfoun NR, Durman SB, Budeguer F, Caro MdP, Bertani RP, Di Peto P, Stenglein SA, Filippone MP, Moretti ER, Díaz Ricci JC, Welin B, Castagnaro AP (2018) Development of PSP1, a Biostimulant Based on the Elicitor AsES for Disease Management in Monocot and Dicot Crops. Front Plant Sci 9: 844; doi: 10.3389/fpls.2018.00844

Chang L, Chang HH, Chang JC, Lu HC, Wang TT, Hsu DW (2018) Plant A20/AN1 protein serves as the important hub to mediate antiviral immunity. PLoS Pathog 14(9): e1007288; doi: 10.1371/journal.ppat.1007288

Chiu YS, Chen PY, Wang PC, Chen YJ, Yang YL (2018) A Polysaccharide Derived from a Trichosporon sp. Culture Strongly Primes Plant Resistance to Viruses. Mol Plant Microbe Interact 31(12):1257-1270; doi: 10.1094/MPMI-01-18-0012-R

da Silva MF, Gonçalves MC, Pinto LR, Perecin D, Xavier MA, Landell MGA (2015) Evaluation of brazilian sugarcane genotypes for resistance to Sugarcane Mosaic Virus under greenhouse and field conditions. Crop Protection 70: 15-20

Dubrovina AS, Kiselev KV (2019) Exogenous RNAs for Gene Regulation and Plant Resistance. Int J Mol Sci 20: 2282; doi: 10.3390/ijms20092282

Enríquez EA, Aispuro E, Vargas I, Martinez MA (2010) Oligosacarinas Derivadas de Pared Celular: Actividad Biológica y Participación en la Respuesta de Defensa de Plantas. Revista Mexicana de Fitopatología 28(2): 144-155

FAO (2019) New standards to curb the global spread of plant pests and diseases. Disponible en: http://www.fao.org/news/story/en/item/1187738/icode/. Consultado 13/01/20

Gan D, Zhang J, Jiang H, Jiang T (2010) Bacterially expressed dsRNA protects maize against SCMV infection. Plant Cell Rep 29: 1261-1268; doi: 10.1007/s00299-010-0911-z

Guo J, Gao S, Lin Q, Wang H (2015) Transgenic Sugarcane Resistant to Sorghum mosaic virus Based on Coat Protein Gene Silencing by RNA Interference. BioMed Research International 2015: 861907; doi: 10.1155/2015/861907

Heinze BS, Thokoane LN, Williams CN, Barnes JM, Rutherford RS (2001) The smut-sugarcane interaction as a model system for the integration of marker discovery and gene isolation. Proceedings of the South African Sugar Technologists’ Association 75: 88-93

Hernández A, Pérez JM, Bosch D, Rivero L (1999) Nueva Versión de Clasificación Genética de los Suelos de Cuba. AGRINFOR, La Habana

Hou S, Liu Z, Shen H, Wu D (2019) Damage-Associated Molecular Pattern-Triggered Immunity in Plants. Frontiers in Plant Science 10: 646; doi: 10.3389/fpls.2019.00646

Kurepa J, Smalle JA (2008) Structure, function and regulation of plant proteasomes. Biochimie 90: 324-335; doi: 10.1016/j.biochi.2007.07.019

La O M, Arencibia A, Carmona ER, Acevedo R (2008) Differential expression analysis by cDNA-AFLP of Saccharum spp. after inoculation with the host pathogen Sporisorium scitamineum. Plant Cell Reports 27: 1103-1111; doi: 10.1007/s00299-008-0524-y

La O M, Mesa JM, Verdecia A, La O D, Montalván J, Carvajal O, Rodríguez J, Alfonso I, Zardón MA, Rivera MJ (2012) Software SC-RESIST. Cuba Número de patente 372-2012

La O M, Puchades Y, Zardón MA, Pérez J (2016) Detection of resistance-related genes in sugarcane cultivars inoculated with sugarcane mosaic virus. Proceedings of the International Society of Sugar Cane Technologists 29: 728-731

Mishra AK, Sharma K, Misra RS (2012) Elicitor recognition, signal transduction and induced resistance in plants. Journal of Plant Interactions 7(2): 95-120; doi: 10.1080/17429145.2011.597517

Mittler R (2017) ROS are good. Trends Plant Sci 22(1): 11-19; doi: 10.1016/j.tplants.2016.08.002

Nafisi M (2015) Interplays between the cell wall and phytohormones in interaction between plants and necrotrophic pathogens. Phytochemistry 112: 63-71; doi: 10.1016/j.phytochem.2014.11.008

Nicaise V (2014) Crop immunity against viruses: outcomes and future challenges. Frontiers in Plant Sci 5: 1-18; doi: 10.33389/fpls.2014.00660

Pavlopoulou A, Karaca E, Balestrazzi A, Georgakilas AG (2019) In Silico Phylogenetic and Structural Analyses of Plant Endogenous Danger Signaling Molecules upon Stress. Oxidative Medicine and Cellular Longevity 19: 8683054; doi: 10.1155/2019/8683054

Puchades Y, La O M, Montalván J, Carvajal O, Martínez Y, Zardón MA (2016) Genetic and Symptomatic Characterization of Sugarcane mosaic virus (SCMV) in Cuba. Sugar Tech 18(2): 184-191; doi: 10.1007/s12355-015-0375-0

Que Y, Lin J, Song X, Xu L, Chen R (2011) Differential gene expression in sugarcane in response to challenge by fungal pathogen Ustilago scitaminea revealed by cDNA-AFLP. Journal of Biomedicine and Biotechnology 2011(1): 160934; doi: 10.1155/2011/160934

Racedo J, Perera MF, Bertani R, Funes C (2016) Molecular Diagnostic of Both Brown and Orange Sugarcane Rust and Evaluation of Sugarcane Brown Rust Resistance in Tucuman, Argentina, Using Molecular Markers Associated with Bru1 a Broad-Range Resistance Allele. Sugar Tech 18: 414–419; doi: 10.1007/s12355-015-0404-z

Santana I, González M, Guillén S, Crespo R (2014) Instructivo Técnico para el Manejo de la Caña de Azúcar. Instituto de Investigaciones de la Caña de azúcar, La Habana; ISBN: 978-959-300-036-9

Serrat M, De la Fé JA, Puchades Y, La O M (2019) Development of a Bioproduct by Encapsulation of a Yeast Endopolygalacturonase in Liposomes. Agrica 8(2): 86-92; doi: 10.5958/2394-448X.2019.00010.5

Sung UH, Paek KH (2013) Plant RNA binding proteins for control of RNA virus infection. Frontiers in Physiology 4: 397; doi: 10.3389/fphys.2013.00397

Thokoane LN, Rutherford RS (2001) cDNA-AFLP differential display of sugarcane (Saccharum spp., hybrids) genes induced by challenge with the fungal pathogen Ustilago scitaminea (sugarcane smut). Proceedings of the South African Sugar Technologists’ Association 75: 104-107

Townsend GR, Heuberger JW (1943) Methods for estimating losses caused by diseases in fungicide experiments. The Plant Disease Reporter 27: 340-343

Üstün S, Sheikh A, Gimenez-Ibanez S, Jones A (2016) The Proteasome Acts as a Hub for Plant Immunity and Is Targeted by Pseudomonas Type III Effectors. Plant Physiol 172: 1941-1958

Vij S, Tyagi AK (2008) A20/AN1 zinc-finger domain-containing proteins in plants and animals represent common elements in stress response. Funct Integr Genomics 8: 301-307; doi: 10.1007/s10142-008-0078-7

Wang L, Liu F, Zhang X, Wang W (2018) Expression Characteristics and Functional Analysis of the ScWRKY3 Gene from Sugarcane. Int J Mol Sci 19: 4059; doi: 10.3390/ijms19124059

Wohlgemuth H, Mittelstrass K, Kschieschan S, Bender J (2002) Activation of an oxidative burst is a general feature of sensitive plants exposed to the air pollutant ozone. Plant, Cell and Environment 25: 717-726

Yang L, Zambrano Y, Hu CJ, Carmona ER, Bernal A, Pérez A, Li YR, Guerra A, Santana I, Arencibia AD (2010) Sugarcane metabolites produced in CO2-rich Temporary Immersion Bioreactors (TIBs) induce tomato (Solanum lycopersicum) resistance against bacterial wilt (Ralstonia solanacearum). In Vitro Cellular and Developmental Biology Plant 46: 558-568; doi: 10.1007/s11627-010-9312-9

Yao W, Ruan M, Qin L, Yang C, Chen R, Chen B, Zhang M (2017) Field Performance of Transgenic Sugarcane Lines Resistant to Sugarcane Mosaic Virus. Front Plant Sci 8: 104; doi: 10.3389/fpls.2017.00104

Zvereva AS, Pooggin MM (2012) Silencing and innate immunity in plant defense against viral and non-viral pathogens. Viruses 4: 2578-2597




Copyright (c) 2021 Biotecnología Vegetal

Biotecnología Vegetal eISSN 2074-8647, RNPS: 2154. ISSN 1609-1841, RNPS: 0397 Editada por: Instituto de Biotecnología de las Plantas. Universidad Central Marta Abreu de Las Villas. Carretera a Camajuaní km 5.5, Santa Clara, Villa Clara, Cuba CP 54 830 Tel: 53 42200124, e-mail: info@ibp.co.cu

Licencia Creative Commons
Biotecnología Vegetal
está bajo una Licencia Creative Commons Atribución-NoComercial 4.0 Internacional.