Factores que influyen en la transformación genética vía Agrobacterium tumefaciens en Phaseolus vulgaris L.
Resumen
El género Phaseolus, así como otras leguminosas, se ha mostrado recalcitrante a la regeneración de plantas in vitro y a la transformación genética vía Agrobacterium tumefaciens. La transferencia de genes en esta especie es limitada debido a su condición genotipo dependiente, además de resultar un proceso de baja eficiencia y poco reproducible. Existen evidencias que varios factores influyen en la integración del ADN y la transformación estable de plantas. Esta revisión tuvo como objetivo analizar la influencia de diferentes factores en la eficiencia de la transformación genética vía Agrobacterium tumefaciens en Phaseolus vulgaris L. tales como: cepa bacteriana, plasmidio, temperatura, condiciones de iluminación, tiempo de cocultivo, concentración bacteriana y marcador de selección.
Palabras clave: ADN, frijol común, leguminosas, plantas transgénicas.
Referencias
Amugune NO, Anyango B, Mukiana TK (2011) Agrobacterium-mediated transformation of common bean. African Crop Science Journal 19(3):137-147
Angenon G, Thu TT (2011) Genetic Transformation. En: Pratap A y Kumar J (Eds.). Biology and Breeding Food Legumes, pp. 178-190. CABI, Indian Institute of Pulses Research, India
Aragao FJ, Vianna GM, Rech EL (2002) Transgenic dry bean tolerant to the herbicide Glufosinate Ammonium. Crop Scienced 42:1248_1302
Arellano J, Fuentes SI, Castillo-España P, Hernández G (2008) Regeneration of different cultivars of common bean (Phaseolus vulgaris L.) via indirect organogenesis. Plant Cell Tiss Organ Cult 1: 11-18
Bermúdez-Caraballoso I, Collado R, García LR, Veitía N, Torres D, Romero C, Angenon G (2007) Empleo de los agentes selectivos Geneticina G-418 e Higromicina B para la transformación genética en Phaseolus vulgaris variedad `CIAP7247F'. Biotecnología Vegetal 7: 205-210
Cervera M, Pina JA, Juarez J, Navarro L, Pena L (1998) Agrobacterium mediated transformation of citrange: factors affecting transformation and regeneration. Plant Cell Rep 18:271_278
Chen L (2002) New type IV secretion system promotes conjugal transfer in Agrobacterium tumefaciens. Journal of Bacteriology 184 (17): 4838-4845
Collado (2013) Phaseolus vulgaris L. regeneration systems and their application for Agrobacterium-mediated genetic transformation. Tesis en opción el Titulo de Doctor en Ciencias Bioingenieril, Vrije Universiteit Brussel. Bélgica
Dillen W, De Clercq J, Goossens A, Van Montagu M, Angenon G (1997) Agrobacterium-mediated transformation of Phaseolus acutifolius A. Gray. Theor Appl Genet 94:151_158
Ditt RF, Nester EW, Comai L (2001) Plant gene expression response to Agrobacterium tumefaciens. Proc Natl Acad Sci USA 98: 10954_10959
Gelvin SB (2000) Agrobacterium and plant genes involved in T-DNA transfer and integration. Annual Review of Plant Physiology and Plant Molecular Biology 51: 223-256
Gelvin SB (2003a) Improving plant genetic engineering by manipulating the host. Trends in Biotechnology 21(3): 95-98
Gelvin SB (2003b) Agrobacterium-mediated plant transformation: the biology behind the `gene-jockeying' tool. Microbiol Mol Biol Rev 67: 16-37
Grant JE, Thomson LM, Pither-Joyce MD, Dale TM, Cooper PA (2003) Influence of Agrobacterium tumefaciens strain on the production of transgenic peas (Pisum sativum L.). Plant Cell Reports 21(12): 1207-1210
Gurlitz RH, Lamb PW, Matthysse AG (1987) Involvement of carrot cell surface proteins in attachment of Agrobacterium tumefaciens. J. Plant Physiol 83: 564-568
Hadi MZ, Kemper E, Wendeler E, Reiss B (2002) Simple and versatile selection of Arabidopsis transformants. Plant Cell Reports 21: 130-135
Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: â-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. The EMBO Journal 6: 3901 3907
Jin S, Komari TP, Gordon MP, Nester EW (1987) Genes responsible for the supervirulence phenothype of Agrobacterium tumefaciens A281. J Bacteriol 169: 4417-4425
Kwapata KP, Sabzikar RS, Sticklen MB, Kelly JD (2010) In vitro regeneration and morphogenesis studies in common bean. Plant Cell Tiss Organ Cult 100: 97_105
Kwapata K, Nguyen T, Sticklen M (2012) Genetic transformation of common bean (Phaseolus vulgaris L.) with the Gus color marker, the Bar herbicide resistance, and the Barley (Hordeum vulgare) HVA1 drought tolerance genes. International Journal of Agronomy, Article ID 198960, 8 pages
Li, DD, Shi W, Deng XX (2002) Agrobacterium-mediated transformation of embryogenic calluses of Ponkan mandarin and the regeneration of plants containing the chimeric ribonuclease gene. Plant Cell Rep 21:153_156
Li J, Vaidya M, White C, Vainstein A, Citovsky V, Tzfira T (2005) Involvement of KU80 in T-DNA integration in plant cells. Proceedings of the National Academy of Sciences of the United States of America 102:19231-19236
Liu Z, Park BJ, Kanno A, Kameya, T (2005) The novel use of a combination of sonication and vacuum infiltration in Agrobacterium-mediated transformation of kidney bean (Phaseolus vulgaris L.) with lea gene. Molecular Breeding 16: 189-197
Miki BM, Abdeen AS, Manabe AY, MacDonald PS (2009) Selectable marker genes and unintended changes to the plant transcriptome. Plant Biotechnology Journal 7: 211-218
Mukeshimana GC , Ma YA, Aaron EW, Guo-qing SP, James DK (2013) Factors influencing regeneration and Agrobacterium tumefaciens-mediated transformation of common bean (Phaseolus vulgaris L.). Plant Biotechnology Reports 7(1): 59-70
Opabode JT (2006) Agrobacterium-mediated transformation of plants: emerging factors that influence efficiency. Biotechnology and Molecular Biology Review 1: 12-20
Pelczar P, Kalck V, Gomez D, Hohn B (2004) Agrobacterium proteins VirD2 and VirE2 mediate precise integration of synthetic T-DNA complexes in mammalian cells. EMBO Rep 5: 632_637
Popelka, JC, Gollasch S, Moore A, Molvig L, Higgins TJ (2006) Genetic transformation of cowpea (Vigna unguiculata L.) and stable transmission of the transgenes to progeny. Plant Cell Report 25:304-312
Rech EL, Vianna GR, Aragao FJL (2008) High-efficiency transformation by biolistics of soybean, common bean and cotton transgenic plants. Nature Protocols 3: 410-418
Sreeramanan S, Maziah M, Abdullah MP, Rosli NM, Xavier R (2006) Potential selectable marker for genetic transformation in banana. Biotechnology 5(2): 189-197
Veltcheva MD, Svetleva SP, Petkova, Pearl A (2005) In vitro regeneration and genetic transformation of common bean (Phaseolus vulgaris L.)-problems and progress. Sci Hortic 107:2_10
Villemont E, Dubois R, Sangwan G, Vasseur Y, Sangwan-Norreel BS (1997) Role of the host cell cycle in the Agrobacterium-mediated genetic transformation of Petunia: evidence of an S-phase control mechanism for T-DNA transfer. Planta 201: 160-172
Yang G, Lee YH, Jiang Y, Kumpatla SP, Hall TC (2005) Organization, not duplication, triggers silencing in a complex transgene locus in rice. Plant Molecular Biology 58: 351-366
Zambre MA, Terryn N, De Clercq J, De Buck S, Dillen W, Van Montagu M, Van Der Straeten D, Angenon G (2003) Light strongly promotes gene transfer from Agrobacterium tumefaciens to plant cells. Planta 216, 580-586
Zambre MA, Cardona C, Van Montagu M, Terryn N, Angenon G (2005) An efficient and reproducible Agrobacterium mediated transformation system for cultivated Phaseolus acutifolius (tepary bean). Theoretical and Applied Genetics 110: 914 _ 924
Zhang Z, Coyne DP, Mitra A (1997) Factors affecting Agrobacterium- mediated transformation of common bean. J Am Soc Hortic Sci 122: 300-305
Copyright (c) 2016 Biotecnología Vegetal
Biotecnología Vegetal eISSN 2074-8647, RNPS: 2154. ISSN 1609-1841, RNPS: 0397 Editada por: Instituto de Biotecnología de las Plantas. Universidad Central Marta Abreu de Las Villas. Carretera a Camajuaní km 5.5, Santa Clara, Villa Clara, Cuba CP 54 830 Tel: 53 42200124, e-mail: info@ibp.co.cu
Biotecnología Vegetal está bajo una Licencia Creative Commons Atribución-NoComercial 4.0 Internacional.